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For Mack and Sasha. You may regard talking to intelligent machines as completely
ordinary, but it wasn’t.
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Abstract

Each time we ask for an object, describe a scene, follow directions or read a document
containing images or figures, we are converting information between visual and lin-
guistic representations. Indeed, for many tasks it is essential to reason jointly over
visual and linguistic information. People do this with ease, typically without even
noticing. Intelligent systems that perform useful tasks in unstructured situations,
and interact with people, will also require this ability.

In this thesis, we focus on the joint modelling of visual and linguistic information
using deep neural networks. We begin by considering the challenging problem of
automatically describing the content of an image in natural language, i.e., image
captioning. Although there is considerable interest in this task, progress is hindered
by the difficulty of evaluating the generated captions. Our first contribution is a new
automatic image caption evaluation metric that measures the quality of generated
captions by analysing their semantic content. Extensive evaluations across a range of
models and datasets indicate that our metric, dubbed SPICE, shows high correlation
with human judgements.

Armed with a more effective evaluation metric, we address the challenge of image
captioning. Visual attention mechanisms have been widely adopted in image cap-
tioning and visual question answering (VQA) architectures to facilitate fine-grained
visual processing. We extend existing approaches by proposing a bottom-up and
top-down attention mechanism that enables attention to be focused at the level of
objects and other salient image regions, which is the natural basis for attention to
be considered. Applying this approach to image captioning we achieve state of the
art results on the COCO test server. Demonstrating the broad applicability of the
method, applying the same approach to VQA we obtain first place in the 2017 VQA
Challenge.

Despite these advances, recurrent neural network (RNN) image captioning mod-
els typically do not generalise well to out-of-domain images containing novel scenes
or objects. This limitation severely hinders the use of these models in real applica-
tions. To address this problem, we propose constrained beam search, an approximate
search algorithm that enforces constraints over RNN output sequences. Using this
approach, we show that existing RNN captioning architectures can take advantage
of side information such as object detector outputs and ground-truth image anno-
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tations at test time, without retraining. Our results significantly outperform previ-
ous approaches that incorporate the same information into the learning algorithm,
achieving state of the art results for out-of-domain captioning on COCO.

Last, to enable and encourage the application of vision and language methods
to problems involving embodied agents, we present the Matterport3D Simulator, a
large-scale interactive reinforcement learning environment constructed from densely-
sampled panoramic RGB-D images of 90 real buildings. Using this simulator, which
can in future support a range of embodied vision and language tasks, we collect the
first benchmark dataset for visually-grounded natural language navigation in real
buildings. We investigate the difficulty of this task, and particularly the difficulty
of operating in unseen environments, using several baselines and a sequence-to-
sequence model based on methods successfully applied to other vision and language
tasks.
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Chapter 1

Introduction

1.1 Bridging Vision and Language

Each time we ask for an object, describe a scene, follow directions or read a document
containing images or figures, we are converting information between visual and lin-
guistic representations. Indeed, for many tasks it is essential to reason jointly over
visual and linguistic information. People do this with ease, typically without even
noticing. Intelligent systems that perform useful tasks in unstructured situations,
and interact with people, will also require this ability. Consider domestic service
robots, voice-controlled drones, visually-aware virtual personal assistants (i.e., the
future descendants of Siri, Cortana, Alexa and Google Assistant), smart buildings
and appliances that respond to natural language commands, intelligent surveillance
and search systems for querying large image and video collections, language-based
image and video editing software, and personal navigation systems that generate
and comprehend visually-grounded instructions. Many of these applications will
have far-reaching importance, and in each case, research that combines the tradi-
tional fields of computer vision (CV) and natural language processing (NLP) is the
only plausible approach.

1.2 Image Captioning and Visual Question Answering

Despite significant progress in CV and NLP, until recently the interaction between
these fields had been much less explored. However, given the significant opportuni-
ties that await, in recent years there has been an increase in research directed towards
ambitious tasks that combine visual and linguistic learning. Two tasks have emerged
as key focus areas within the vision and language research community. The first
is the task of automatically describing the content of an image in natural language,
i.e., image captioning [Vinyals et al., 2015; Xu et al., 2015]. As illustrated in Figure
1.1 left, image captioning is an excellent test of visual and linguistic understanding,

1



2 Introduction

Image Captioning Visual Question Answering

In
pu

t

What sort of bus is this?

O
ut

pu
t A man in a pink bow tie and a pink

shirt is being hugged by a man in
a blue shirt.

double decker

Figure 1.1: The image captioning (left) and visual question answering (right) tasks.
Examples are taken from the COCO [Chen et al., 2015] and VQAv2 [Goyal et al.,
2017] datasets respectively. Further background regarding these datasets is provided

in Chapter 3.

requiring a model to identify and describe the most salient elements of an image,
such as the objects present and their attributes, as well as the spatial and semantic
relationships between them [Fang et al., 2015]. The second task is the task of visual
question answering, or VQA. As illustrated in Figure 1.1 right, a VQA model takes as
input an image and an open-ended natural language question about the image, and
must output one of possibly several correct answers [Antol et al., 2015]. Interest in
these tasks has been driven in part by the development of new and larger benchmark
datasets [Chen et al., 2015; Goyal et al., 2017]. However, these tasks also have di-
rect applications, most obviously in terms of intelligent assistants for the low vision
community [Gurari et al., 2018].

One way of evaluating the current state of the art in image captioning is by under-
taking a user study. An analysis of the output of one recently proposed captioning
model found that people considered 52% of the generated captions to be ‘bad’1, but
this figure was only 13% for captions written by people [Liu et al., 2017a]. Clearly,
there remains considerable scope for improvement. However, since user studies are
expensive and difficult to replicate, generated image captions are more typically eval-
uated using automated metrics such as Bleu [Papineni et al., 2002] and CIDEr [Vedan-
tam et al., 2015]. Unfortunately however, these metrics have proven to be inadequate

1Defined as a caption that misses the foreground, main objects, events or theme of the image, or
contains obviously hallucinated objects, activities or relationships.
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substitutes for human judgement, and they are difficult to interpret [Kulkarni et al.,
2013; Hodosh et al., 2013; Elliott and Keller, 2014]. Motivated by these limitations,
one of the contributions of this thesis is an improved automated evaluation metric.
Our metric, dubbed SPICE (an acronym for Semantic Propositional Image Caption
Evaluation), evaluates generated captions in terms of the truth value of the propo-
sitions they contain. As we show in Chapter 4, SPICE substantially addresses the
limitations of existing metrics, helping to track the state of the art and supporting
the ongoing development of more effective captioning models.

In comparison to image captioning, the VQA task is much easier to evaluate as the
answers are typically only one or two words. This makes it relatively straightforward
to determine accuracy by comparing candidate answers to reference answers. How-
ever, as with image captioning, there remains considerable scope for further research.
For example, prior to the 2017 VQA Challenge2, the question answering accuracy of a
VQA baseline model using the largest available dataset was only 62.3% [Goyal et al.,
2017]. To improve the performance of both image captioning and VQA models, in
Chapter 5 we propose a novel neural network architecture based on visual attention
[Xu et al., 2015; Zhu et al., 2016]. In general, attention mechanisms focus on relevant
inputs while ignoring irrelevant or distracting stimuli. Our approach leverages in-
sights from neuroscience and psychology to make objects the basis of attention in our
model [Egly et al., 1994; Scholl, 2001]. Using this approach we achieve state of the
art performance in both image captioning and VQA, while simultaneously helping
to improve the interpretability of the resulting systems. Our final (ensembled) entry
in the 2017 VQA Challenge obtained first place with an overall accuracy of 69.0%,
0.8% ahead of the second-placed entry.

To put this result in context, a similar level of accuracy on this task could proba-
bly be attained by a toddler. For example, our model is able to correctly answer sim-
ple questions about common objects and colours, but struggles with counting and
more difficult questions requiring a greater amount of prior knowledge, or ‘com-
monsense’. However, this characterisation is subject to two strong qualifications.
First, the VQA model can only perform this single narrowly defined task, while even
very young children can obviously perform many tasks and learn new tasks very
quickly. Second, the VQA model’s performance deteriorates catastrophically when
tested on visual concepts that are not found in the training set. This limitation also
holds for image captioning models [Tran et al., 2016]. To address this brittleness, in
Chapter 6 we extend our image captioning model to make use of additional informa-
tion sources, such as images tagged with keywords, when generating captions. The
resulting method—constrained beam search—is a general and principled approach to

2www.visualqa.org/challenge_2017.html
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adding constraints to the output of a recurrent neural network (RNN). Using this ap-
proach, we achieve state of the art performance on ‘out-of-domain’ images containing
novel scenes or objects not seen in training.

1.3 Embodied Vision and Language Agents

The image captioning and VQA tasks are ideal for encouraging and quantifying
progress in vision and language understanding, but they suffer from a serious limi-
tation. Both tasks are passive. The input images are static, and the model (or agent)
is not allowed to move or control the camera, seek clarification, or take any other ac-
tion in the environment. This neglects a crucial aspect of the motivating applications
listed in Section 1.1, as each of these examples demands an agent that is embodied
(or in control of some task-specific programming interface at least). In Chapter 7, the
final technical chapter of this thesis, we address this limitation by connecting vision
and language to actions. We focus on the problem of a robot executing a natural-
language navigation instruction in a real 3D environment. We refer to this challenge
as Vision-and-Language Navigation (VLN).

The idea that we might be able to give general, verbal instructions to a robot
and have at least a reasonable probability that it will carry out the required task is
one of the long-held goals of robotics, and artificial intelligence (AI). Although in-
terpreting natural-language navigation instructions has already received significant
attention [Chaplot et al., 2018; Chen and Mooney, 2011; Guadarrama et al., 2013; Mei
et al., 2016; Misra et al., 2017; Tellex et al., 2011], previous approaches to the natural
language command of robots have often restricted the visual complexity of the prob-
lem. In contrast, we are motivated by recent work in image captioning and VQA in
which natural images are used. We note that both VQA and VLN can be interpreted
as visually grounded sequence-to-sequence translation problems, and many of the
same methods are applicable. Therefore, to enable and encourage the application
of vision and language methods to the problem of interpreting visually-grounded
navigation instructions, in Chapter 7 we present the Matterport3D Simulator. The
simulator is a large-scale interactive reinforcement learning (RL) environment con-
structed from the Matterport3D dataset [Chang et al., 2017] which contains 10,800
densely-sampled panoramic RGB-D images of 90 real-world building-scale indoor
environments. Compared to synthetic RL environments [Beattie et al., 2016; Kempka
et al., 2016; Zhu et al., 2017], the use of real-world image data preserves visual and
linguistic richness, maximising the potential for trained agents to be transferred to
real-world applications.

Based on the Matterport3D environments, we collect the Room-to-Room (R2R)
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Instruction: Head upstairs and walk past the piano through an
archway directly in front. Turn right when the hallway ends at
the pictures and table. Wait by the moose antlers hanging on the
wall.

Figure 1.2: The Room-to-Room (R2R) navigation task. We focus on executing natu-
ral language navigation instructions in previously unseen real-world buildings. The
agent’s camera can be rotated freely. Blue discs indicate nearby (discretized) naviga-

tion options.

navigation dataset containing 21,567 open-vocabulary, crowd-sourced navigation in-
structions with an average length of 29 words. Each instruction describes a trajectory
traversing typically multiple rooms. As illustrated in Figure 1.2, the associated task
requires an agent to follow natural-language instructions to navigate to a goal loca-
tion in a previously unseen building. We investigate the difficulty of this task, and
particularly the difficulty of operating in unseen environments, using several base-
lines and a sequence-to-sequence model based on methods successfully applied to
other vision and language tasks [Antol et al., 2015; Chen et al., 2015; Goyal et al.,
2017].

1.4 Contributions

In summary, this thesis makes four main contributions, beginning with image cap-
tioning and visual question answering (VQA), before moving to consider embodied
agents:

1. An effective evaluation metric for image descriptions. To rapidly develop



6 Introduction

agents that can communicate visual content, we need fast, accurate and inex-
pensive metrics to evaluate the quality of the generated language. Our SPICE
metric reflects human judgements significantly more accurately than other au-
tomatic metrics. Even after widespread adoption, SPICE is still the only auto-
matic evaluation metric that (correctly) judges human image descriptions to be
superior to those from any proposed image captioning model3.

2. A combined bottom-up and top-down visual attention model. Visual atten-
tion mechanisms have become an important component of many vision and
language models [Xu et al., 2015; Zhu et al., 2016]. We leverage insights from
neuroscience and psychology to make objects the basis of attention in our
model. This is a general approach that more closely unifies tasks involving
visual and linguistic understanding with recent progress in object detection
[Ren et al., 2015a]. Using this approach we achieve state of the art performance
in image captioning and VQA, while simultaneously helping to improve the
interpretability of the resulting systems.

3. Constrained beam search for controlling the output of an RNN. Neural net-
work captioning models typically generalise poorly to out-of-domain images
containing novel scenes or objects not seen in training [Tran et al., 2016]. Mo-
tivated by this problem, we propose constrained beam search, a principled ap-
proach to completing partial sequences by adding constraints to the output of a
recurrent neural network (RNN). Using this approach to incorporate additional
text fragments, such as image tags, during caption generation, we achieve state
of the art captioning performance on out-of-domain images without degrading
in-domain performance.

4. The Matterport3D Simulator and the R2R navigation dataset. Datasets are
a critical driver of progress in computer vision, not just as a source of train-
ing data, but also as a means of measuring and comparing the performance of
competing algorithms [Torralba and Efros, 2011]. The proposed Room-to-Room
(R2R) navigation task requires agents to follow natural language navigation in-
structions in previously unseen environments (using the Matterport3D Simula-
tor). This is the first visually realistic, interactive and reproducible benchmark
for evaluating embodied vision and language agents.

3Based on COCO C40 test leaderboard as at March 2018 (refer http://cocodataset.org/#captions-
leaderboard).
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1.5 Thesis Outline

The remaining chapters of this thesis are summarised below:

Chapter 2—Background. This chapter provides a general overview of the existing
literature relating to image captioning, visual question answering (VQA), and related
vision and language tasks, in order to put the contributions of this thesis in context.
We also introduce some basic technical background that is assumed in the remainder
of the thesis.

Chapter 3—Datasets. In this chapter, we outline the various pre-existing datasets
that we use for training and evaluating our models, including datasets designed for
image classification, image captioning, VQA and object detection.

Chapter 4—SPICE: Semantic Propositional Image Caption Evaluation. In this chap-
ter, we introduce the task of automatic image caption evaluation. We first review ex-
isting automated evaluation metrics. Then, motivated by the role of semantic propo-
sitions in human evaluations, we present the SPICE metric. Finally, we compare
SPICE with existing metrics in terms of correlation with human judgements over a
range of models and datasets.

Chapter 5—Bottom-Up and Top-Down Visual Attention for Image Captioning and
VQA. Using the SPICE evaluation metric from Chapter 4 and others, in this chapter
we develop our image captioning model that places objects at the centre of the visual
attention mechanism. We additionally illustrate the application of the same principle
to VQA, and comprehensively evaluate the impact our bottom-up and top-down
visual attention model on both tasks.

Chapter 6—Guided Image Captioning using Constrained Beam Search. Address-
ing the generalisation of captioning models to images containing novel scenes or
objects, we propose constrained beam search to guarantee the inclusion of selected
words or phrases in the output of an recurrent neural network, while leaving the
model free to determine the syntax and additional details. We demonstrate that,
when combined with image tag predictions, this approach outperforms prior work.

Chapter 7—Vision and Language Navigation in Real Environments. In this chap-
ter, we begin to connect vision and language agents with actions. We propose a new
reinforcement learning (RL) environment constructed from dense RGB-D imagery of
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90 real buildings Chang et al. [2017], and collect the Room-to-Room (R2R) dataset
containing 21,567 open-vocabulary, crowd-sourced navigation instructions. Finally,
we examine the performance of several baseline models, and human performance,
on this newly established benchmark.

Chapter 8—Conclusion and Future Directions. We conclude the thesis with a sum-
mary of our main contributions and a discussion of future research directions for
improving the work.

1.6 List of Publications

Much of the work described in this thesis has been previously published or accepted
in conference proceedings, as follows:

• Our SPICE image caption evaluation metric (described in Chapter 4) was pub-
lished at ECCV [Anderson et al., 2016].

• The bottom-up and top-down visual attention model (described in Chapter 5)
has been accepted for publication and full oral presentation at CVPR [Anderson
et al., 2018a].

• The constrained beam search approach to out-of-domain image captioning (de-
scribed in Chapter 6) was published at EMNLP [Anderson et al., 2017].

• The work on vision-and-language navigation (described in Chapter 7) has been
accepted for publication and spotlight presentation at CVPR [Anderson et al.,
2018b].

The author also contributed to the following projects and publications. This work
does not form part of this thesis:

• A video sequence encoding method for activity recognition based on hierarchi-
cal rank pooling [Fernando et al., 2016],

• An exploration of architectures and hyperparameters identifying the tips and
tricks that lead to the success of our competition-winning VQA model [Teney
et al., 2018], and

• A method for predicting accuracy on large datasets from small pilot training
datasets [Johnson et al., 2018].



Chapter 2

Background

In this chapter we review existing literature relating to image captioning, visual ques-
tion answering (VQA), and related vision and language tasks, in order to put the con-
tributions of this thesis in context. We also provide a brief technical introduction to
the convolutional neural network (CNN) and recurrent neural network (RNN) mod-
els that we use as image encoders and language encoders/decoders in later chapters.

2.1 Image Captioning

Research interest in the task of image captioning arguably dates back to the origins of
computer vision, when Marvin Minsky asked an undergraduate in 1966 to ‘spend the
summer linking a camera to a computer and getting the computer to describe what
it saw’ [Boden, 2008]. Although the distinction is becoming increasingly blurred,
existing work can be broadly grouped into three categories: (1) template-based image
captioning, (2) retrieval-based image captioning, and (3) models that generate novel
captions.

In general, template-based natural language generation systems map their non-
linguistic input directly (i.e., without intermediate representations) to linguistic sur-
face structures (i.e., templates), which contain gaps or slots that must be filled to
generate the final output [Reiter and Dale, 1997]. In template-based image caption-
ing models such as Baby Talk [Kulkarni et al., 2013], slots typically correspond to
object and attributes, and they are filled using the output of object detectors and
other visual classifiers. In principle, template-based approaches assume that there
are a limited number of salient syntactic patterns in descriptive language that can be
encoded as templates, although in practice the final template may be the result of a
number of consecutive transformations [Deemter et al., 2005], or even the output of
a neural network [Lu et al., 2018].

In retrieval-based approaches, captions are produced by first finding similar im-
ages, and then copying their captions [Oliva and Torralba, 2006; Farhadi et al., 2010;

9
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A group of people 
shopping at an 
outdoor market. 
!
There are many 
vegetables at the 
fruit stand.

Vision!
Deep CNN

Language !
Generating!

RNN

Figure 2.1: A high-level illustration of an encoder-decoder neural network architec-
ture for image captioning (reproduced from [Vinyals et al., 2015]).

Hodosh et al., 2013]. For example, Farhadi et al. [2010] learn to project image and
sentence features to a common embedding space, allowing the similarity between
images and sentences to be scored. Given a large enough dataset of images and
captions, this score can be used to retrieve a caption for a given image, or to obtain
images that illustrate a given caption. Naturally, the chances of finding an appro-
priate caption depend strongly on the size and visual diversity of the underlying
dataset, although with large datasets retrieval-based approaches can provide sur-
prisingly strong baselines [Devlin et al., 2015b].

Although models that are capable of generating novel captions also have a long
history [Barnard et al., 2003], it was the recent application of deep neural networks
to this problem that led a resurgence of interest in this research area. Inspired by
advances in automatic machine translation that used encoder-decoder architectures
based on recurrent neural networks (RNNs) [Sutskever et al., 2014; Bahdanau et al.,
2015a], a number of research groups concurrently proposed encoder-decoder neural
network architectures for image captioning [Mao et al., 2015; Vinyals et al., 2015;
Karpathy et al., 2014; Xu et al., 2015; Fang et al., 2015; Donahue et al., 2015]. Broadly,
these models consist of convolutional neural network (CNN) based image encoders,
which are used to extract feature representations from an image, combined with
RNN-based language decoders to generate captions, as illustrated in Figure 2.1. We
provide additional technical background related to the usage of CNNs as image
encoders, and RNNs as language decoders, in Sections 2.3 and 2.4, respectively.

Since the first introduction of encoder-decoder architectures for image caption-
ing, these models have been greatly refined. Many papers have studied different
approaches for incorporating visual representations into the language decoder [Wu
et al., 2016a; Yao et al., 2017b]. Other works have focused on using reinforcement
learning to directly optimise caption quality metrics [Rennie et al., 2017; Liu et al.,
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Figure 2.2: A high-level illustration of the joint-embedding approach to VQA, in
which CNN and RNN encoders are used to encode the image and the question,

respectively (reproduced from [Wu et al., 2017]).

2017a], developing attention mechanisms [Xu et al., 2015; You et al., 2016; Lu et al.,
2017] (which we address further in Chapter 5), and improving the diversity and ‘nat-
uralness’ of the captions produced [Dai et al., 2017b]. To support these efforts, a
number of image caption datasets have been collected, of increasing size and com-
plexity [Rashtchian et al., 2010; Hodosh et al., 2013; Young et al., 2014; Lin et al.,
2014b]. The main image captioning dataset used in recent work is COCO [Lin et al.,
2014b], which is discussed further in Section 3.2.

2.2 Related Vision and Language Tasks

The task of Visual Question Answering (VQA) has also seen substantial interest from
the research community, beginning with fairly restricted (sometimes synthetic) set-
tings and small datasets [Bigham et al., 2010; Malinowski and Fritz, 2014; Geman
et al., 2015]. More recently, much larger datasets have been introduced [Antol et al.,
2015; Goyal et al., 2017], which are discussed further in Section 3.3. As illustrated in
Figure 2.2, a common approach to this task involves mapping both the input image
and the question to a joint embedding space using CNN and RNN encoders, with
the output stage of the model taking the form of a classifier over a set of candidate
answers, or an RNN decoder [Wu et al., 2017].

Consistent with this general model structure, much of the recent work in VQA
has been focused on improving the performance of the multimodal pooling oper-
ation in these models [Fukui et al., 2016], investigating compositional models [An-
dreas et al., 2016], incorporating visual and/or linguistic attention mechanisms [Yang
et al., 2016a; Kazemi and Elqursh, 2017; Lu et al., 2016], and incorporating additional
external information into the model from knowledge bases or other sources [Zhu
et al., 2015; Wu et al., 2016b]. More broadly, the general problem of reasoning jointly
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over visual and linguistic information has been investigated through work on visual
grounding [Rohrbach et al., 2016], refering expression generation and comprehen-
sion [Kazemzadeh et al., 2014; Mao et al., 2016], video captioning [Venugopalan et al.,
2015; Donahue et al., 2015] and visual dialogue [Das et al., 2017], to mention but a
few papers from a large body of literature that is largely beyond the scope of this
thesis.

Having introduced some of the existing literature relating to image captioning
and VQA, we now provide a brief introduction to CNNs and RNNs, which function
as the encoder and decoder ‘building blocks’ in these models. For further details
we recommend consulting a recent textbook on artificial neural networks such as
Goodfellow et al. [2016] and the provided references. Readers who are familiar with
these models may skip Sections 2.3 and 2.4.

2.3 Convolutional Neural Networks

Convolutional neural networks (CNNs) [LeCun et al., 1989] are a class of artificial
neural network used for processing gridlike data, such as the pixels of an image.
More specifically, a CNN is a network that contains one or convolutional layers.
These are computational units that produce an output feature map by convolving an
input representation with linear kernels containing learned parameters. Each kernel
operates independently to produce a 2D response map by sliding across the width
and height of the input tensor. The convolution layer output is the concatenation of
the individual response maps of multiple kernels, forming a 3D tensor.

Convolutions have several properties that are particularly desirable for image
processing [Goodfellow et al., 2016]. First, convolutions are invariant to translation,
meaning that objects and other features can be recognised regardless of their position
in the image. Second, convolutions achieve efficient parameter sharing since the
same kernels are used at every position in the input. Last, interactions are sparse
(and therefore efficient) in a convolutional layer because only tensor elements that
are nearby will interact through the kernel1.

To allow information in the individual filter responses of a convolutional layer
to be intermingled, a typical CNN contains multiple stacked convolutional layers as
illustrated in Figure 2.3. This allows a CNN to learn concepts at an increasing level
of abstraction as information is processed through the network, and usually involves
interspersing convolutional layers with non-linear activation functions and pooling
operations. While various non-linear activation functions have been investigated, the
rectified linear unit (ReLU) [Nair and Hinton, 2010] defined by f (x) = max(x, 0) is

1This assumes that the kernel is smaller than the input.
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Figure 2.3: An example of a convolutional neural network (CNN) for image classifica-
tion containing two convolutional layers, two pooling layers, and two fully connected
layers. A non-linear activation function (not shown) is typically applied after each

convolution layer.

frequently used as it is non-saturating, which can result in faster training [Krizhevsky
et al., 2012]. While activation functions operate in an elementwise fashion, pool-
ing functions replace the output of a network at a certain location with a summary
statistic—such as the mean or maximum—calculated over a rectangular neighbour-
hood. This helps to make CNN feature maps approximately invariant to small trans-
lations of the input. Pooling functions can also be used to reduce the size of the
output representation, increasing the receptive field of the convolutional filters in
subsequent layers Goodfellow et al. [2016].

As with most artificial neural networks, an entire CNN can express a single dif-
ferentiable function. During training, kernel parameters are adapted by backprop-
agating error gradients from an appropriate loss function defined over the network
output [LeCun et al., 1989]. Although the details of CNN loss functions are task
specific, it has been observed many times that CNN parameters trained for one task
can function as effective visual feature detectors for many other tasks, for example
by simply removing the final prediction layer(s) [Huh et al., 2016]. Consistent with
this observation, in this thesis we make extensive use of CNNs that have been pre-
trained for ImageNet image classification [Russakovsky et al., 2015] as generic image
encoders for vision and language tasks such as image captioning.

2.4 Recurrent Neural Networks

Recurrent neural networks (RNNs) are a class of artificial neural network used for
processing (either encoding or decoding) sequential data, such as speech or text
[Sutskever et al., 2011]. Unlike feedforward neural networks such as CNNs, RNNs
contain one or more feedback loops and an internal state (memory) that is updated
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Figure 2.4: Long Short-Term Memory (LSTM) cell, illustrating the operation of the
input gate, output gate and forget gate (reproduced from Graves et al. [2013]).

as each element in an input or output sequence is processed. This structure allows
the network to process and remember signals, allowing the model to learn sequential
dependencies in data.

2.4.1 Long Short-Term Memory (LSTM) Networks

Long Short-Term Memory (LSTM) networks [Hochreiter and Schmidhuber, 1997] are
a particular RNN implementation that is capable of learning long-term dependencies.
In this thesis, we make extensive use of LSTM networks as language encoders or
decoders within larger models in Chapters 5, 6 and 7. In the chapters that follow we
will refer to the operation of the LSTM over a single time step using the following
notation:

ht = LSTM(xt, ht−1) (2.1)

where xt is an input vector to the LSTM, representing one element from a sequence
of input vectors {..., xt−1, xt, xt+1, ...}, and ht is the LSTM output vector which will
also be one element from an output sequence {..., ht−1, ht, ht+1, ...}.

The full feed-forward operation and hidden state update of each LSTM layer is
illustrated in Figure 2.4, and can be described as follows. Assuming N hidden units
within each LSTM layer, an N-dimensional input gate it, forget gate f t, output gate
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ot, and input modulation gate gt at timestep t are updated as:

it = sigm (Wxixt + Whiht−1 + bi) (2.2)

f t = sigm
(
Wx f xt + Wh f ht−1 + b f

)
(2.3)

ot = sigm (Wxoxt + Whoht−1 + bo) (2.4)

gt = tanh (Wxcxt + Whcht−1 + bc) (2.5)

where xt ∈ RK is the input vector, ht ∈ RN is the LSTM output, W’s and b’s are
learned weights and biases, and sigm (·) and tanh(·) are the sigmoid and hyperbolic
tangent functions, respectively, applied element-wise. The above gates control the
memory cell activation vector ct ∈ RN and output ht ∈ RN of the LSTM as follows:

ct = f t � ct−1 + it � gt (2.6)

ht = ot � tanh (ct) (2.7)

where � represents element-wise multiplication. Note that both the previous LSTM
output vector ht−1 and the previous LSTM memory cells ct−1 are taken as inputs in
the current time step. However, in Equation 2.1 we have neglected the propagation
of memory cells for notational convenience.

2.4.2 LSTM Encoders

When functioning as an encoder, the encoded representation of some input sequence
{x0, ..., xT} is usually taken to be the final LSTM output vector hT, or the entire
sequence of outputs {h0, ..., hT} if an attention mechanism is used (refer Section 5.1).
As the LSTM input xt is a vector, when LSTMs are required to process discrete input
tokens such as words or characters from text, an input word embedding matrix can
be used. In this case, the LSTM input vector will be a—possibly learned—encoding
of a discrete token, given by:

xt = WeΠt (2.8)

where We is a word embedding matrix, and Πt is a one-hot column vector identifying
the input token at timestep t.

2.4.3 LSTM Decoders

When functioning as an decoder, for example as a language decoder generating dis-
crete output sequences y = (y1, ..., yT) containing words or other tokens from vocab-
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ulary Σ, an LSTM can be augmented with an output projection layer and a softmax.
For example, in Section 5.2.2 at each time step t the conditional distribution over
possible output words is given by:

p(yt | y1:t−1) = softmax (Wpht + bp) (2.9)

where Wp ∈ R|Σ|×N and bp ∈ R|Σ| are learned weights and biases, and the softmax
function is defined as:

softmax (x)i =
exp(xi)

∑j exp(xj)
(2.10)

Denoting the full set of model parameters by θ, the distribution over complete output
sequences can be calculated as the product of conditional distributions:

pθ(y) =
T

∏
t=1

pθ(yt | y1:t−1) (2.11)

Typically, in a decoder formulation the LSTM input xt will be defined to include
the previously generated output yt−1, but in general the formulation of the inputs
x and the first hidden state h0 is application specific. In recent years a large variety
of sequence prediction problems have been formulated using LSTM decoders by
appropriately defining x and h0, including dependency parsing [Kiperwasser and
Goldberg, 2016], language modelling [Sutskever et al., 2011], machine translation
[Sutskever et al., 2014], image captioning [Vinyals et al., 2015] and visual question
answering (VQA) [Zhu et al., 2016].

As with CNNs, RNNs used for generating sequences can be trained in a super-
vised fashion, typically using cross-entropy loss. Given a set of training sequences D,
the cross-entropy loss maximises the probability of the observed data by minimising:

LXE(θ) = −
1
|D| ∑

y∗∈D
log pθ(y∗) (2.12)

= − 1
|D| ∑

y∗∈D

T

∑
t=1

log pθ(y∗t | y∗1:t−1) (2.13)

As illustrated in Equation 2.13, this formulation treats the sequence prediction task
as a single-step supervised learning problem. The RNN is trained to predict the next
token following a given a partial sequence, and every decision is weighted equally.

Given an RNN modelling a probability distribution over output sequences, we
may wish to find the output sequence with the maximum log-probability. This is
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known as the RNN decoding problem. As in Equation 2.13 the log probability of any
partial sequence yt of length t is typically given by:

log pθ(yt) =
t

∑
j=1

log pθ(yj | y1:j−1) (2.14)

As it is computationally infeasible to solve this problem exactly, beam search [Koehn,
2010] is widely used to find an approximate solution. At each decoding time step t,
beam search stores only the the b most likely partial sequences, where b is known as
the beam size. We will denote the set of all partial solutions held at the start of time
t by Bt−1 = {yt−1,1, ..., yt−1,b}. At each time step t, a candidate set Et is generated by
considering all possible next word extensions:

Et =
{
(yt−1, w) | yt−1 ∈ Bt−1, w ∈ Σ

}
(2.15)

The beam Bt is updated by retaining only the b most likely sequences in Et. This
can be trivially implemented by sorting the partial sequences in Et by their log-
probabilities and retaining the top b. Initialisation is performed by inserting an empty
sequence into the beam, i.e. B0 := {ε} such that E1 = Σ. The algorithm terminates
when the beam contains a completed sequence (e.g., containing an end marker) with
higher log probability than all incomplete sequences.
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Chapter 3

Datasets

In computer vision and natural language processing, high-quality datasets—along
with well-specified tasks and evaluation protocols—have been crucial to advanc-
ing the state of the art. In this section, we introduce the main existing vision and
language datasets that are used in this thesis. Our proposed dataset for visually-
grounded natural language navigation in real buildings—the Room-to-Room (R2R)
dataset—is discussed in Chapter 7.

3.1 ImageNet

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC or ImageNet) [Rus-
sakovsky et al., 2015] is a large-scale benchmark dataset and challenge for image
classification and object detection. The dataset contains photographs collected from
Flickr1 and other search engines, manually annotated by workers from the Amazon
Mechanical Turk2 (AMT) crowd-sourcing platform. The challenge has been run each
year from 2010 until its final year in 2017, with the size and format of the dataset
expanding over time. Various annotations are available, as follows:

• Image Classification: The classification dataset consists of 1.4M images man-
ually labelled with the presence of one of 1000 fine-grained object categories,
including a huge variety of both natural and man-made visual phenomena. As
illustrated in Figure 3.1, each image contains one ground-truth label. The fi-
nal ILSVRC2012 version of this dataset consists of 1,281K training images, 50K
validation images, and 100K test images.

• Single-Object Localisation: For single-object localisation, 524K training im-
ages plus the validation and test images from the classification dataset are ad-
ditionally annotated with an axis-aligned bounding box for every instance of

1www.flickr.com
2www.mturk.com
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Figure 3.1: Examples from the ImageNet image classification dataset, illustrating the
variety of fine-grained object classes.

the ground-truth object category. The object classes are the same as the object
classes for the image classification task.

• Object Detection: The object detection dataset contains additional images col-
lected from Flickr using scene-level (rather than object-level) queries. Each im-
age is annotated with a list of object categories present in the image, along with
an axis-aligned bounding box indicating the position and scale of each instance
of each object category. There are 200 object classes, representing basic-level
object categories, and 457K training images, 21K validation images and 40K
test images.

In this thesis, we will make extensive use of convolutional neural networks (CNNs)
that have been pretrained on the ImageNet image classification task. Learning good
general-purpose image feature representations on ImageNet and then transferring
these models to other tasks has become a common practice [Huh et al., 2016].
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3.2 COCO

COCO [Lin et al., 2014b], short for Common Objects in COntext, is a large-scale
object detection, segmentation and captioning dataset. The dataset contains Flickr
photographs depicting examples of 91 preselected object categories, such as ’person’,
’dog’, ’cow’, ’train’, ’car’, ’motorbike’, ’chair’, ’sofa’ and ’bottle’. Unlike previous ob-
ject detection datasets such as PASCAL VOC [Everingham et al., 2010], images were
deliberately selected to contain multiple objects viewed from non-canonical perspec-
tives. In total, 328K images were collected, of which 204K have been annotated using
AMT.

In the 2014/15 release, the dataset was split into 83K training images, 41K val-
idation images, 41K test 2014 images, 81K test 2015 images, and 123K unlabelled
images. However, based on community feedback, in 2017 the 80K/40K train/val
split was revised to 115K/5K for train/val. Test images are divided equally into
test-dev, test-standard, test-challenge, and test-reserve subsets.

Several different annotation formats are available, as described below and illus-
trated in Figure 3.2. In each case annotations were collected using AMT.

• Object Segmentations: Images in the training and validation sets, as well as
the 2015 test set are annotated with per-instance object segmentations for 80 of
the 91 object categories. Segmentations were not collected for 11 categories for
which instances were too common, too rare, or too easily confused. On average
each image contains 3.5 object categories and 7.7 object instances. In total,
1.5M objects were annotated. To support object detection pipelines based on
image bounding boxes, tight-fitting bounding boxes were also obtained from
the annotated object segmentation masks.

• Image Captions: Images in the training and validation sets, as well as the 2014
test set, are annotated with image captions. To collect the captions, AMT work-
ers were instructed to provide a sentence that describes all of the important
parts of the scene, using at least eight words. Five captions were collected for
each image, except for a random subset of 5K test images for which 40 captions
were collected per image (comprising the C40 test set, as differentiated from
the C5 test set). Finally, for each testing image, one additional caption was col-
lected to quantify human performance when comparing scores with machine
generated captions. In total 1M captions were collected [Chen et al., 2015].

• Other: More recently, several additional annotations have been added to the
dataset including person keypoints and ‘stuff’ segmentations identifying amor-
phous background regions such as grass and sky.
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(1) a child sitting outside on a city street eats a
sandwich. (2) young boy sitting down eating
a hot dog (3) a boy takes a big bite out of a
hot dog. (4) having a hot dog outdoors on the
sidewalk. (5) a young boy munches on a hot
dog at an outdoor table.

(1) a person watching as a kite flies through
the air (2) a man watching people fly kites in
a snowy park on a sunny day (3) a person
wearing a red beanie and a yellow and red
scarf. (4) some kites flying over some build-
ings in the snow. (5) there are lots of kites
being flown in the sky.

tr
ai

n

(1) several train cars going in different direc-
tions at a depot. (2) a train yard with various
trains and waiting passenger. (3) four electric
trains are seen on the tracks beside this small
town. (4) lots of cable cars, on lots of tracks
(5) a picture of a trolley that is on some train
tracks.

(1) people walk on the platform beside a
steam train. (2) a group of people walking
by a locomotive train. (3) a group of people
standing next to a large train. (4) a train trav-
eling down a track passing through a station.
(5) a long train traveling down train tracks
near a wall.

Figure 3.2: Examples of annotated images in the COCO dataset. Segmentations
are illustrated only for the indicated class, although typically multiple objects are

annotated in each image. Captions are numbered 1–5.
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To ensure consistency in the evaluation of captioning agents, access to the test
sets is restricted and a test evaluation server is maintained by the COCO organisers,
providing standard automatic evaluation metrics. In the case of image captioning,
the various evaluation metrics used are discussed in Chapter 4. Finally, we note that
in the case of image captioning, an alternative partition of the offical training and
validation split has been extensively reported in prior work for ablation studies and
offline testing. Known as the ‘Karpathy’ split after its proposers [Karpathy and Fei-
Fei, 2015], this split contains 113K training images, and 5K images respectively for
validation and testing.

3.3 VQA

3.3.1 Version 1.0

The Visual Question Answering (VQA) dataset [Antol et al., 2015] is a large-scale
dataset containing free-form, open-ended, natural language questions and answers
about images, as illustrated by the examples in Figure 3.3. The dataset (now referred
to as v1.0) contains 614K questions and 6.1M answers associated with 205K images.
The images used are the 123K training and validation images and 81K test images
from the COCO 2014/15 dataset [Lin et al., 2014b], following the same train/val/test
split strategy.

To create the dataset, questions and answers were collected in separate stages
using AMT. To bias against generic image-independent questions, workers were in-
structed to ask questions that require the image to answer. In order to encourage the
submission of interesting and diverse questions, AMT workers were instructed to ask
a question that a smart robot ‘probably can not answer, but any human can easily
answer while looking at the scene in the image’. For each question, 10 ground-truth
answers were collected from different AMT workers. Since most questions are quite
specific, most answers consist of simple one to three word phrases.

Two modalities are offered for answering questions, multiple choice and open-
ended. To evaluate the generated answers for the open-ended task, answers are
preprocessed to standardise case, numbers and punctuation, then the following ac-
curacy metric is used:

accuracy = min(
# humans that provided that answer

3
, 1) (3.1)

i.e., an answer is deemed to be 100% accurate if at least three out of 10 AMT workers
provided the same answer.
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Q: What color are her eyes? Q: Does it appear to be rainy?
A: brown A: no

Q: What is the mustache made of? Q: Does this person have 20/20 vision?
A: bananas A: no

Figure 3.3: Examples of questions (Q) and answers (A) from the VQA v1.0 dataset.
Although the questions are primarily visual in nature, some also require ’common-

sense’ knowledge, e.g. ‘Does this person have 20/20 vision?’.

3.3.2 Version 2.0

Several works pointed out that questions in the v1.0 dataset provide strong priors that
can result in good performance, even if the visual content of the image is ignored
[Agrawal et al., 2016; Jabri et al., 2016; Zhang et al., 2016a]. The Visual Question
Answering (VQA) dataset v2.0 [Goyal et al., 2017] subsumes and extends the v1.0
dataset in order to reduce these biases in the answer distributions. Specifically, the
VQA v2.0 dataset was created in the following way—given an (image, question,
answer) triplet from the VQA v1.0 dataset, AMT workers were asked to identify a
new image that is similar to the original but results in a different correct answer.
This balances the answer distributions in the dataset such that each question in VQA
v2.0 is associated with not just a single image, but rather a pair of similar images
that result in two different answers to the question, as illustrated in Figure 3.4. In
total the VQA v2.0 dataset, which was used for the 2017 VQA Challenge3, contains
1.1M questions and 11.1M answers associated with the same 205K images as the v1.0
dataset.

3.4 Visual Genome

The Visual Genome dataset [Krishna et al., 2016] contains 108K images annotated
with scene graphs as well as 5.4M region descriptions and 1.7M visual question

3www.visualqa.org/challenge.html
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Q: Is there something to cut the vegetables
with? Q: Is this a healthy meal?

A: yes A: no A: yes A: no

Q: How many adults are in this picture? Q: How many chairs are there?
A: 2 A: 1 A: 7 A: 1

Q: What color is the hydrant? Q: What sport will the man be doing?
A: red A: black and yellow A: surfing A: frisbee

Figure 3.4: Examples of questions (Q) and answers (A) from the VQA v2.0 dataset il-
lustrating images with different answers to the same question, as well as the different

question types, i.e. Yes/No (top), Number (middle), and Other (bottom).

answers. Scene graph annotations consist of grounded objects, attributes associated
with objects, and pairwise relationships between objects. Each image has an average
of 35 objects, 26 attributes and 21 relationships. An example is illustrated in Figure
3.5.

To create the dataset, all creative commons images were selected from the in-
tersection of COCO’s [Lin et al., 2014b] 328K images and the 100M images in the
YFCC100M dataset [Thomee et al., 2016]. As a result, approximately 51K of COCO’s
123K training and validation images are found in Visual Genome. All annotations
were collected using AMT, starting with region descriptions from which objects, at-
tributes and relations were extracted. Note that unlike object detection datasets, ob-
jects and attribute annotations in Visual Genome are freely annotated strings, rather
than class labels. However, effort has been made to map annotations to synsets in
the WordNet [Miller, 1995] ontology.
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fire hydrant

yellow

fire hydrant

man

woman

standing

jumping over

man shorts

inis behind

fire hydrant

man

jumping over

woman

standing
shorts

in

is behind

yellow

woman in shorts is 
standing behind 
the man

yellow fire hydrant 

Q. What is the woman standing next to? 

A. Her belongings.

Q. What color is the fire hydrant?

A. Yellow.

man jumping over 
fire hydrant

Region Based Question Answers Free Form Question Answers

Figure 3.5: An example image annotation from the Visual Genome dataset (repro-
duced from Krishna et al. [2016]), illustrating questions and answers, region descrip-

tions and grounded scene graphs containing objects, attributes and relations.



Chapter 4

SPICE: Semantic Propositional
Image Caption Evaluation

In this chapter, we address the problem of automatically evaluating image captions.
While new datasets often spur considerable innovation—as has been the case with
the COCO Captioning Challenge [Chen et al., 2015]—benchmark datasets also re-
quire fast, accurate and inexpensive evaluation metrics to facilitate rapid progress.
Although numerous automatic evaluation metrics have already been applied to the
task of evaluating image captions, existing metrics have proven to be inadequate sub-
stitutes for human judgement [Kulkarni et al., 2013; Hodosh et al., 2013; Elliott and
Keller, 2014]. As such, there is an urgent need to develop new automated evaluation
metrics for this task [Elliott and Keller, 2014; Bernardi et al., 2016]. To address this
problem, we present a novel automatic image caption evaluation metric that mea-
sures the quality of generated captions by analysing their semantic content. Our
method more closely resembles human judgement while offering the additional ad-
vantage that the performance of any model can be analysed in greater detail than
with other automated metrics.

4.1 Image Caption Evaluation

Given a candidate caption y and a set of high-quality reference captions S = {s1, . . . , sm}
associated with an image I, our goal is to evaluate the quality of y given I. Typically,
the source image I is disregarded during this evaluation, which is performed by
computing a score that captures the similarity between y and S. This approach poses
caption evaluation as a purely linguistic task that is similar to evaluating text sum-
maries or machine translations (MT). As such, a number of textual similarity metrics
designed for other tasks have been applied to image caption evaluation, including
Bleu [Papineni et al., 2002], METEOR [Denkowski and Lavie, 2014] and ROUGE [Lin,

27
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Metric Proposed Application Principle

Bleu Machine Translation n-gram precision
ROUGE Document Summarization n-gram recall
METEOR Machine Translation n-gram with synonym matching
CIDEr Image Captions tf-idf weighted n-gram cosine similarity
SPICE (ours) Image Captions scene graph synonym matching

Table 4.1: A summary of textual similarity metrics.

2004]. More recently, CIDER [Vedantam et al., 2015] has been proposed specifically
for the image captioning setting.

As summarised in Table 4.1, existing metrics rely on matching or aligning n-
grams1 between the candidate and reference texts. Bleu [Papineni et al., 2002] is an
n-gram precision metric with a sentence-brevity penalty, calculated as a weighted
geometric mean over different length n-grams. ROUGE [Lin, 2004] is a package of a
measures for automatic evaluation of text summaries. ROUGE-L, the version com-
monly used in the image captioning community, is an F-measure based on words in
the longest common subsequence between candidate and reference sentences. ME-
TEOR [Denkowski and Lavie, 2014] works by first performing an alignment between
words in the candidate and reference sentences, taking into account exact matches
as well as soft-similarity based on stem, synonym and paraphrase matches. The
METEOR score is then computed as a parameterised harmonic mean of precision
and recall with an added alignment fragmentation penalty. CIDER [Vedantam et al.,
2015] is based on a term frequency-inverse document frequency (tf-idf) weighting of
each n-gram in the candidate and reference sentences, which are then compared by
summing their cosine similarity across n-grams.

Several studies have investigated the validity of these metrics when used for im-
age caption evaluation by reporting correlation measures between these metrics and
human judgements of caption quality. On the PASCAL 1K dataset, Bleu-1 was found
to exhibit weak or no correlation with human judgements (Pearson’s r of -0.17 and
0.05 for captions generated by a language model and a template-based model respec-
tively) [Kulkarni et al., 2013]. Using the Flickr 8K [Hodosh et al., 2013] dataset, Elliott
and Keller [2014] found that METEOR exhibited moderate correlation (Spearman’s
ρ of 0.524) with human judgements, outperforming ROUGE SU-4 (0.435) and Bleu-1
(0.345). Finally, using the PASCAL-50S and ABSTRACT-50S datasets, Vedantam et al.
[2015] demonstrated that CIDEr and METEOR have a greater agreement with human
consensus than Bleu and ROUGE.

1An n-gram is defined as a contiguous sequence of n words.
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4.2 SPICE Metric

One of the problems with using metrics based on n-grams such as Bleu, ROUGE,
CIDEr or METEOR to evaluate captions, is that n-gram overlap is neither necessary nor
sufficient for two sentences to convey the same meaning [Giménez and Màrquez, 2007]. To
illustrate the limitations of n-gram comparisons, consider the following two captions
(a,b) from the COCO dataset [Chen et al., 2015] (emphasis added):

(a) A young girl standing on top of a tennis court.
(b) A giraffe standing on top of a green field.

The captions describe two very different images. However, comparing these captions
using any of the previously mentioned n-gram metrics produces a high similarity
score due to the presence of the long 5-gram phrase ‘standing on top of a’ in both
captions. Now consider the captions (c,d) that describe the same image:

(c) A shiny metal pot filled with some diced veggies.
(d) The pan on the stove has chopped vegetables in it.

These captions convey almost the same meaning, but exhibit low n-gram similarity as
they have no words in common. N-gram approaches suffer from serious deficiencies,
particular when applied at the sentence level rather than the corpus level.

To help overcome these limitations, we re-frame the caption evaluation problem in
terms of natural language semantics. As image captions are almost always assertions
rather than performatives, i.e., they describe or report some state of affairs [Austin,
1962], they ought to be truth-conditionally verifiable. We therefore adopt a truth-
conditional approach to semantics, reducing the meaning of a sentence to the truth-
conditions of atomic propositions. In other words, we hypothesise that when people
evaluate the quality of image captions, they primarily consider the truth-value of the
claims about the image contained therein. For example, given an image with the caption
‘A young girl standing on top of a tennis court’, a conscientious human evaluator
would interpret it as asserting the following atomic propositions2: (1) there is a girl,
(2) the girl is young, (3) the girl is standing, (4) there is a court, (5) the court is for
tennis, and (6) the girl is on top of the court. If each of these propositions is true—in
the sense that it is true in the situation depicted by the image—we argue that many
people would consider the caption to be acceptable3.

2Note that these propositions can be more formally represented by a predicate combined with an
appropriate number of arguments, or equivalently with a tuple.

3In making this argument we don’t consider the saliency of the propositions contained in the caption.
However, in the actual SPICE metric saliency is implicitly captured by recall, i.e. caption candidates are
penalised if they do not mention relevant propositions contained in the reference captions.
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Figure 4.1: SPICE uses semantic propositional content to assess the quality of im-
age captions. Both reference and candidate captions are mapped through depen-
dency parse trees (top) to semantic scene graphs (right)—encoding the objects (red),
attributes (green), and relations (blue) present. Caption quality is determined using

an F-score calculated over tuples in the candidate and reference scene graphs

Taking this main idea as motivation, we estimate caption quality by transforming
both candidate and reference captions into a semantic representation. Our choice
of semantic representation is the scene graph. As illustrated in Figure 4.1, our scene
graph implementation explicitly encodes the objects, attributes and relations found
in image captions, abstracting away most of the lexical and syntactic idiosyncrasies
of natural language in the process. While we are aware that there are other com-
ponents of linguistic meaning—such as figure-ground relationships—that are almost
certainly relevant to caption quality, in this work we focus exclusively on semantic
meaning. We choose to use a scene graph representation as scene graphs and similar
semantic structures have been used in a number of recent works within the context
of image and video retrieval systems to improve performance on complex queries
[Lin et al., 2014a; Johnson et al., 2015; Schuster et al., 2015]. Several of these pa-
pers have demonstrated that semantic graphs can be parsed from natural language
descriptions [Lin et al., 2014a; Schuster et al., 2015].

Given candidate and reference scene graphs, our metric computes an F-score de-
fined over the conjunction of logical tuples representing propositions in the scene
graph. We dub this approach SPICE for Semantic Propositional Image Caption Evalua-
tion. We now describe each component of our approach in detail.
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4.2.1 Semantic Parsing from Captions to Scene Graphs

Following Schuster et al. [2015], we define the subtask of parsing captions to scene
graphs as follows. Given a set of object classes C, a set of attribute types A, a set of
relation types R, and a caption y, parse y to a scene graph G defined by:

G = (O, E) (4.1)

where O = {o1, ..., on} is the set of objects mentioned in y, and each object is rep-
resented as a pair oi = (ci, Ai) where ci ∈ C is the object class and Ai ⊆ A are the
attributes of oi. E ⊆ O×R×O is the set of relations between pairs of objects in the
graph. Note that in practice, C, A and R are open-world sets that expand as new
object, relation and attribute types are identified, placing no restriction on the types
of objects, relation and attributes that can be represented. We allow both count noun
objects, such as ’chair’ and ’bottle’, as well as mass noun objects such as ‘grass‘ and
‘sky‘.

Before introducing our approach to parsing, we note that any scene graph can
be equivalently represented by a conjunction of logical propositions, or tuples. We
define the invertible function T that returns tuples from a scene graph as:

T (G) = obj(G) ∪ attr(G) ∪ rel(G) (4.2)

obj(G) = {(ci) | oi ∈ O} (4.3)

attr(G) = {(ci, a) | oi ∈ O, a ∈ Ai} (4.4)

rel(G) = {(ci, r, cj) | (oi, r, oj) ∈ E} (4.5)

where obj(G), attr(G) and rel(G) are functions that return object tuples contain-
ing one element, object-attribute tuples containing two elements, and object-relation-
object tuples containing three elements, respectively. For example, the scene graph
in Figure 4.1 maps to the following tuples:{

(girl), (court), (girl, young), (girl, standing),
(court, tennis), (girl, on top of, court)

}
As illustrated by this example, object classes, attribute types and relation types may
be single words or short phrases.

To parse a caption to a scene graph, we first establish syntactic dependencies
between words in the caption using a Probabilistic Context-Free Grammar (PCFG)
dependency parser [Klein and Manning, 2003] pretrained on a large, independent
dataset. An example of the resulting dependency syntax tree, using Universal De-
pendency relations [De Marneffe et al., 2014], is shown in Figure 4.1 top. To map
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from dependency trees to scene graphs (Figure 4.1 right), we adopt a variant of the
rule-based version of the Stanford Scene Graph Parser Schuster et al. [2015] that first
modifies the dependency tree and then directly extracts scene graph tuples.

In its original implementation, the Stanford Scene Graph Parser performs three
post-processing steps to modify the dependency tree. These steps simplify quan-
tificational modifiers such as ‘a lot of’, resolve pronouns such as ‘it’ and apply a
distributive reading to all plural nouns such as ‘three men’, creating multiple copies
of these nodes according to the value of their numeric modifier. The resulting graph
structure is then parsed according to nine simple linguistic patterns to extract object
mentions, object-attribute pairs and object-relation-object tuples, which are added
to the scene graph. As an example, one of the linguistic patterns captures adjec-
tival modifiers, such as young amod←−−− girl, generating the object mention ‘girl’ with
attribute ‘young’ that is illustrated in Figure 4.1. Full details of the pipeline can be
found in the original paper.

Our implementation differs from the original parser in several respects. The most
significant difference occurs in regard to the treatment of plural nouns such as ‘three
men’. We do not duplicate these nodes in the dependency graph or the resulting
scene graph. In previous work, duplication of object instances was desirable to en-
able scene graphs to be grounded to image regions in an image retrieval setting John-
son et al. [2015]; Schuster et al. [2015]. In our work, we choose to encode numeric
modifiers (object counts) in the scene graph as attributes of a single object. While this
approach is like the original in that it does not distinguish collective and distributive
readings, it simplifies scene graph alignment and ensures that each incorrect numeric
modifier in a caption will only be counted as a single error.

In addition to the changed treatment of plural nouns, we also add three additional
linguistic patterns to the parser that reflect other differences between the original im-
age retrieval setting and ours. First, to extract as much information as possible, we
add an additional linguistic rule that ensures that nouns will always appear as objects
in the scene graph, even if no associated relations can identified. While disconnected
graph nodes may have been problematic in the image retrieval setting, they are eas-
ily handled by our semantic proposition F-score calculation. Second, to improve
scene graph matching between captions, we encode compound nouns such as ‘ten-
nis court’ as objects (‘court’) with attributes (‘tennis’). This prevents the scenario in
which ‘court’ and ‘tennis court’ are treated as different objects and a caption unfairly
penalised. Third, we add a pattern that applies a distributive reading to nouns sep-
arated by a conjunction. For example, given the caption ‘a man and a woman eating
chips’, this pattern ensures that in the resulting scene graph both the man and the
woman will have an ‘eating’ relation with the chips.
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Notwithstanding the use of the Stanford Scene Graph Parser, our proposed SPICE
metric is not tied to this particular parsing pipeline. In fact, it is our hope that
ongoing advances in syntactic and semantic parsing will allow SPICE to be further
improved in future releases. We also note that because SPICE operates on scene
graphs, in principle it could be used to evaluate generated captions for images in in
datasets that contain reference scene graphs [Schuster et al., 2015; Johnson et al., 2015;
Plummer et al., 2015; Krishna et al., 2016] even in the absence of any actual reference
captions. However, we leave evaluation of SPICE under these circumstances to future
work.

4.2.2 F-score Calculation

Having presented our approach to parsing a caption to a scene graph, we now de-
scribe the calculation of the SPICE metric. Given a candidate scene graph Gy and a
reference scene graph GS, we define SPICE as a balanced F-score (equally weighting
precision P and recall R) calculated over matching tuples in Gy and GS:

SPICE(Gy, GS) = F1(Ty, TS) =
2 · P(Ty, TS) · R(Ty, TS)

P(Ty, TS) + R(Ty, TS)
(4.6)

where Ti = T (Gi). Two questions remain. First, given the parser described in Sec-
tion 4.2.1, how can we best parse the set of reference captions S to a single unified
scene graph GS, in order to pool the available information? Second, how do we best
define precision P and recall R to account for captions that refer to the same objects,
attributes or relations using synonyms?

To provide context to these questions, consider the following example in which
two reference captions S = {s1, s2} will be used to evalute candidate caption y. We
also provide the correctly parsed scene graph tuple representation for each caption:

s1: A young girl standing on top of a tennis court.
Ts1 =

{
(girl), (court), (girl, young), (girl, standing), (court, tennis),

(girl, on top of, court)
}

s2: A woman standing on top of a tennis court holding a tennis racquet.
Ts2 =

{
(woman), (racquet), (court), (woman, standing), (racquet, tennis),

(court, tennis), (woman, on top of, court), (woman, holding, racquet)
}

y: A young lady holding a tennis racket.
Ty =

{
(lady), (racket), (lady, young), (racket, tennis), (lady, holding, racket)

}
Suppose we unify the reference scene graph by naively taking the union of all tuples
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TS = Ts1 ∪ Ts2 , such that:

TS =
{

(girl), (woman), (racquet), (court), (girl, young), (racquet, tennis),
(girl, standing), (woman, standing), (court, tennis), (girl, on top of, court),

(woman, on top of, court), (woman, holding, racquet)
}

Note that in the context of reference captions s1 and s2, candidate caption y appears
to be quite accurate. Yet, if we now define precision and recall in the standard way,
i.e., P(Ty, TS) =

|Ty∩TS|
|Ty| and R(Ty, TS) =

|Ty∩TS|
|TS| , the candidate caption y scores zero

for both precision and recall, and therefore zero for the SPICE metric. This occurs
because there are no exact matches between Ty and Ts1 or Ts1 .

Motivated by this problem, we introduce a notion of synonymity. Using the
METEOR implementation [Denkowski and Lavie, 2014], we consider two words or
phrases to be synonymous if their lemmatised word forms are equal (allowing terms
with different inflectional forms to match), if they share membership in any synonym
set according to WordNet [Miller, 1995], or if they are listed as paraphrases in an
appropriate paraphrase table. To apply synonym matching to tuples, we define the
binary matching operator ⊗ as the function that returns the scene graph tuples in a
set TA that match one or more tuples in a second set TB:

TA ⊗ TB =
{

u | u ∈ TA, v ∈ TB, u ∼ v
}

(4.7)

where u ∼ v means that tuples u and v have the same length and all corresponding
elements are synonyms. We make no allowance for partial credit if one or more
elements of a tuple are incorrect. In the domain of image captions, many relations
(such as ’in’ and ’on’) are so common they arguably deserve no credit when applied
to the wrong objects. For example, the relation tuple (girl, on top of, horse) should
receive no credit if the correct relation tuple is (girl, on top of, court)4.

For the purpose of calculating the SPICE metric in Figure 4.6, we now define
precision P, recall R as:

P(Ty, TS) =
|Ty ⊗ TS|
|Ty|

(4.8)

R(Ty, TS) =
|Ty ⊗ TS|
|TS|

(4.9)

Re-evaluating our example using this definition, if we consider ’girl’, ’woman’ and
’lady’ to be synonyms, and ’racket’ and ’racquet’ to be synonyms, P(Ty, TS) = 5

5

and R(Ty, TS) = 5
12 with unmatched tuples in TS emphasised (above). This is a

4We naturally assume that horse and court are not synonyms



§4.2 SPICE Metric 35

Runtime (s) Bleu METEOR ROUGE-L CIDEr SPICE SPICE (caching)

Min 10.1 32.9 7.7 31.4 1,101.3 40.3
Max 10.9 33.8 8.8 32.8 1,123.8 1,066.6
Average 10.5 33.3 8.1 31.9 1,110.5 149.9

Table 4.2: Runtime of SPICE in comparison to other commonly used image caption-
ing metrics when evaluating 40.5K candidate captions on the COCO validation set.
Results represent wall clock elapsed time on a desktop machine calculated using the
outputs of 12 different image captioning models used in the 2015 COCO Captioning
Challenge. With caching, SPICE runtime improves substantially. This is because after
the first model evaluation, the validation captions (and a substantial number of the

candidate captions) are found in the cache and do not need to be parsed again.

substantial improvement, but one problem remains. In the presence of synonym
matching, many of the tuples in TS are redundant as they are synonymous with
other tuples in TS. This means that recall may be understated, particularly when
many reference captions are available such as in the COCO C40 test set.

We address this issue by merging synonymous object, attribute and relation ref-
erences in the reference scene graph GS. First, we merge object nodes with synony-
mous class labels, retaining both labels. Second, we merge synonymous attributes
belonging to the same object node. Third, we merge synonymous relations linking
the same object nodes. In general, this is a greedy process as there may be multiple
merge opportunities at each step. Applying this approach to our example problem,
now R(Ty, TS) =

5
9 based on the following merged set of reference tuples:

TS =
{

(girl/woman), (racquet), (court), (girl/woman, young), (racquet, tennis),
(girl/woman, standing), (court, tennis), (girl/woman, on top of, court),

(girl/woman, holding, racquet)
}

Again, unmatched tuples are emphasised.
Being an F-score, SPICE is simple to understand and easily interpretable as it is

naturally bounded between 0 and 1. Unlike CIDEr, SPICE does not use cross-dataset
statistics—such as corpus word frequencies—and is therefore equally applicable to
both small and large datasets. We provide an end-to-end example of the SPICE
calculation in Figure 4.2, and further examples at the end of the chapter.

4.2.3 Running Time

We have released a Java implementation of the SPICE metric based on the Stanford
CoreNLP software library [Manning et al., 2014]. In Table 4.2 we benchmark the
running time of SPICE in comparison to other commonly used metrics for image
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Image I:

Candidate caption y:
A teal green car with yellow and red

flames painted on the front.

Candidate scene graph Gy:

Reference captions S:
(1) An old green car with a flame design

painted on the front of it.
(2) A photograph of a european car.
(3) An old school car with flames.

(4) A picture of a car parked.
(5) A car is painted with flames on the

front.

Reference scene graph GS:

SPICE score: 0.444 (Precision: 0.667,
Recall: 0.333)

Figure 4.2: Full example of the SPICE calculation. Candidate caption y and reference
captions S are parsed to scene graphs Gy and GS, respectively. SPICE is calculated
as an F-score over matching tuples in Gy and GS, which are highlighted in green:
(car), (car,green), (front), (flame), (car, with, flame), (car, paint on, front). Note that
no credit is given for correctly mentioning the colour of the flames (‘yellow and red’)

as this information is not present in the reference scene graph GS.
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captioning. The running time of SPICE is dominated by the cost of the underlying
PCFG dependency parser [Klein and Manning, 2003], which is reflected in longer
running times in comparison to n-gram metrics that do not parse captions. For this
reason we also implement a simple caching mechanism for storing caption parses
using an LMDB database. As illustrated in Table 4.2, this significantly speeds up
repeated evaluations against the same set of reference captions since, after the first
evaluation, the reference captions (and a substantial number of the candidate cap-
tions) are found in the cache.

4.2.4 Limitations

One of the limitations of SPICE is that the restriction to (positive) atomic propositions
means that there are certain kinds of assertions in captions that we cannot evaluate.
For example, we cannot directly evaluate quantificational claims (e.g., ’Most of the
balls are red’) or negated claims (e.g., ’The dog isn’t on the sofa’). Although previous
analysis by van Miltenburg et al. [2016] found that negations are rarely present in
image captions (0.56% of captions in the Flickr 30K [Young et al., 2014] and 0.54% of
captions in COCO [Lin et al., 2014b]), this is nonetheless an important direction for
future work.

More generally, whenever the focus of research is reduced to a single benchmark
number, there are risks of unintended side-effects [Torralba and Efros, 2011]. For ex-
ample, algorithms optimised for performance against a certain metric may produce
high scores, while losing sight of the human judgement that the metric was supposed
to represent. SPICE measures how well caption generators recover objects, attributes
and the relations between them. However the metric neglects fluency, implicitly
assuming that captions are well-formed. If this assumption is untrue in a particu-
lar application, SPICE may assign high scores to captions that represent only objects,
attributes and relations, while ignoring other important aspects of grammar and syn-
tax. In this scenario a fluency metric, such as surprisal [Hale, 2001; Levy, 2008], could
be included in the evaluation. However, by default we have not included any fluency
adjustments as conceptually we favour simpler, more easily interpretable metrics. To
model human judgement in a particular task as closely as possible, a carefully tuned
ensemble of metrics including SPICE capturing various dimensions of correctness
would most likely be the best. ‘SPIDEr’, a linear combination of SPICE and CIDEr,
is one such ensemble that appears to work well in practice [Liu et al., 2017a], as does
a combination of SPICE, METEOR and Word Mover’s Distance (WMD) [Kilickaya
et al., 2017].
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4.2.5 Alternatives to Scene Graph Representations

The task of transforming a sentence into its meaning representation has also re-
ceived considerable attention within the computational linguistics community. As
such, there are several possible alternatives to scene graphs that could be considered
in the context of image caption evaluation. Recent work has proposed a common
framework for semantic graphs called an abstract meaning representation (AMR)
[Banarescu et al., 2012], for which a number of parsers [Flanigan et al., 2014; Werling
et al., 2015; Wang et al., 2015] and the Smatch evaluation metric [Cai and Knight,
2013] have been developed. However, in initial experiments, we found that AMR
representations using Smatch similarity performed poorly as image caption repre-
sentations. This may be because AMR parsers are not yet reliable, or because the
AMR representation, being based on PropBank framesets [Kingsbury and Palmer,
2002; Palmer et al., 2005], is verb-oriented. Verbs in image captions are frequently
absent or uninformative, e.g. ‘a very tall building with a train sitting next to it’.
Because we exploit the semantic structure of scene descriptions and give primacy to
nouns, our approach is apparently better suited to evaluating image captions.

Within the context of automatic MT evaluation, a number of other papers have
proposed the use of shallow-semantic information such as semantic role labels (SRLs)
[Giménez and Màrquez, 2007]. For example, in the MEANT metric [Lo et al., 2012],
SRLs are used to try to capture the basic event structure of sentences – ‘who did what
to whom, when, where and why’ [Pradhan et al., 2004]. Using this approach, sentence
similarity is calculated by first matching semantic frames across sentences by starting
with the verbs at their head. However, as previously noted, verb-oriented approaches
may not be well suited to evaluating image captions. Conceptually, the closest work
to ours is probably the bag of aggregated semantic tuples (BAST) metric [Ellebracht
et al., 2015] for image captions. However, this work required the collection of a
purpose-built dataset in order to learn to identify semantic tuples, and the proposed
metric was not evaluated against human judgements or existing metrics.

4.3 Experiments

In this section, we compare SPICE to existing caption evaluation metrics. We study
both system-level and caption-level correlation between automated metrics and hu-
man judgements, but we focus on system-level correlation as identification of the best
captioning models is our primary motivation. Data for the evaluation is drawn from
four datasets containing captions and human judgements. As the data was collected
in multiple previous studies, a large variety of captioning models are represented.
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Depending on the dataset, human judgements may consist of either pairwise rank-
ings or graded scores, as described further below.

Our choice of correlation coefficients is consistent with an emerging consensus
from the WMT Metrics Shared Task [Machacek and Bojar, 2014; Stanojević et al.,
2015] for scoring machine translation metrics. To evaluate system-level correlation,
we use the Pearson correlation coefficient. Although Pearson’s ρ measures linear
association, it is smoother than rank-based correlation coefficients when the number
of data points is small and systems have scores that are very close together. For
caption-level correlation, we evaluate using Kendall’s τ rank correlation coefficient,
which evaluates the similarity of pairwise rankings. Where human judgements con-
sist of graded scores rather than pairwise rankings, we generate pairwise rankings
by comparing scores over all pairs in the dataset. In datasets containing multiple
independent judgements over the same caption pairs, we also report inter-human
correlation.

4.3.1 Human Judgements

We now describe the datasets of image captions and human judgements that were
used as the basis for comparing caption evaluation metrics.

4.3.1.1 COCO

The COCO 2014 dataset [Chen et al., 2015] consists of 123K images. 5K randomly
selected test images are annotated with 40 captions each (C40 data). All other im-
ages are annotated with 5 captions each (C5 data). For further details regarding the
underlying dataset refer to Section 3.2. As part of the 2015 COCO Captioning Chal-
lenge, human judgements were collected using Amazon Mechanical Turk (AMT) for
the 15 learned captioning models that were submitted as competition entries, as well
as two additional entries representing human captions and randomly selected refer-
ence captions. All AMT workers were native English speakers located in the USA
that had been white-listed from previous work. A total of 255,000 human judgements
were collected, representing three independent answers to five different questions
for each entry. The questions capture the dimensions of overall caption quality (M1
- M2), correctness (M3), detailedness (M4), and saliency (M5), as detailed in Table
4.3. For pairwise rankings (M1, M2 and M5), each entry was evaluated using the
same subset of 1000 images from the C40 test set. Scores for each evaluation metric
were obtained from the COCO organisers, who used our code to calculate SPICE.
The SPICE methodology was fixed before evaluating on COCO. At no stage were we
given access to the COCO test captions.
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4.3.1.2 Flickr 8K.

The Flickr 8K dataset [Hodosh et al., 2013] contains 8K images annotated with five
human-generated reference captions each. The images were manually selected to
focus mainly on people and animals performing actions. The dataset also contains
graded human quality scores for 5K captions, with scores ranging from 1 (‘the se-
lected caption is unrelated to the image’) to 4 (‘the selected caption describes the
image without any errors’). Each caption was scored by three expert human evalu-
ators sourced from a pool of native speakers. All evaluated captions were sourced
from the dataset, but association to images was performed using an image retrieval
system. In our evaluation we exclude 158 correct image-caption pairs where the can-
didate caption appears in the reference set. This reduces all correlation scores but
does not disproportionately impact any metric.

4.3.1.3 Composite Dataset.

We refer to an additional dataset of 12K human judgements over Flickr 8K, Flickr
30K [Young et al., 2014] and COCO captions as the composite dataset [Aditya et al.,
2015]. In this dataset, captions were scored using AMT on a graded correctness scale
from 1 (‘The description has no relevance to the image’) to 5 (‘The description relates
perfectly to the image’). Candidate captions were sourced from the human reference
captions and two recent captioning models [Karpathy and Fei-Fei, 2015; Aditya et al.,
2015].

4.3.1.4 PASCAL-50S

To create the PASCAL-50S dataset [Vedantam et al., 2015], 1K images from the UIUC
PASCAL Sentence Dataset [Rashtchian et al., 2010]—originally containing five cap-
tions per image—were annotated with 50 captions each using AMT. The selected
images represent 20 classes including people, animals, vehicles and household ob-
jects. The dataset also includes human judgements over 4K candidate sentence pairs.
However, unlike in previous studies, AMT workers were not asked to evaluate cap-
tions against images. Instead, they were asked to evaluate caption triples by identify-
ing ‘Which of the sentences, B or C, is more similar to sentence A?’, where sentence
A is a reference caption, and B and C are candidates. If reference captions vary in
quality, this approach may inject more noise into the evaluation process, however
the differences between this approach and the previous approaches to human eval-
uations have not been studied. For each candidate sentence pair (B,C) evaluations
were collected against 48 of the 50 possible reference captions. Candidate sentence
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M1 M2 M3 M4 M5
ρ p-value ρ p-value ρ p-value ρ p-value ρ p-value

Bleu-1 0.24 (0.37) 0.29 (0.27) 0.72 (0.00) -0.54 (0.03) 0.44 (0.09)
Bleu-4 0.05 (0.86) 0.10 (0.70) 0.58 (0.02) -0.63 (0.01) 0.30 (0.27)
ROUGE-L 0.15 (0.59) 0.20 (0.47) 0.65 (0.01) -0.55 (0.03) 0.38 (0.14)
METEOR 0.53 (0.04) 0.57 (0.02) 0.86 (0.00) -0.10 (0.71) 0.74 (0.00)
CIDEr 0.43 (0.10) 0.47 (0.07) 0.81 (0.00) -0.21 (0.43) 0.65 (0.01)
SPICE-exact 0.84 (0.00) 0.86 (0.00) 0.90 (0.00) 0.39 (0.00) 0.95 (0.00)
SPICE 0.88 (0.00) 0.89 (0.00) 0.89 (0.00) 0.46 (0.07) 0.97 (0.00)

M1: Percentage of captions evaluated as better or equal to human caption.
M2: Percentage of captions that pass the Turing Test.
M3: Average correctness of the captions on a scale 1–5 (incorrect - correct).
M4: Average detail of the captions from 1–5 (lacking details - very detailed).
M5: Percentage of captions that are similar to human description.

Table 4.3: System-level Pearson’s ρ correlation between automatic evaluations and
human judgements for the 15 competition entries plus human captions in the 2015
COCO Captioning Challenge [Chen et al., 2015]. SPICE more accurately reflects
human judgement overall (M1–M2), and across each dimension of quality (M3–M5,

representing correctness, detailedness and saliency)

pairs were generated from both human and model captions, paired in four ways:
Human-Correct (two correct human captions), Human-Incorrect (two human cap-
tions where one is from a different image), Human-Model (a human caption and a
model-generated caption), and Model-Model (two model-generated captions).

4.3.2 System-Level Correlation

In Table 4.3 we report system-level correlations between metrics and human judge-
ments over entries in the 2015 COCO Captioning Challenge [Chen et al., 2015]. Each
entry is evaluated using the same 1000 image subset of the COCO C40 test set. SPICE
significantly outperforms existing metrics, reaching a correlation coefficient of 0.88
with human quality judgements (M1), compared to 0.43 for CIDEr and 0.53 for ME-
TEOR. As illustrated in Table 4.3, SPICE more accurately reflects human judgement
overall (M1 - M2), and across each dimension of quality (M3 - M5, representing cor-
rectness, detailedness and saliency). Importantly, only SPICE rewards captions that
are more detailed (indicated by positive correlation with M4). Bleu and ROUGE-L
appear to penalise detailedness, while the results for CIDEr and METEOR are not
statistically significant.

As illustrated in Figure 4.3, SPICE is the only metric to correctly rank human-
generated captions first. CIDEr and METEOR rank human captions 7th and 4th,
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Figure 4.3: Automatic evaluation scores vs. human judgements for the 15 entries
in the 2015 COCO Captioning Challenge. Each blue data point represents a single
model. Human-generated captions are marked in red. Only SPICE scores human-
generated captions significantly higher than challenge entries, which is consistent

with human judgement.

respectively. SPICE is also the only metric to correctly select the top-5 non-human
entries. To help understand the importance of synonym-matching when calculating
SPICE scores, we also evaluated SPICE using exact tuple matching in the F-score
calculation. In this case, u ∼ v in Equation 4.7 is redefined to mean that tuples
u and v have the same length and all corresponding elements have the same lemma.
These results are reported as SPICE-exact in Table 4.3. Performance degraded only
marginally, although we expect synonym-matching to become more important when
fewer reference captions are available.

4.3.3 Colour Perception, Counting and Other Questions

While system-level scores are very important, we would also like to know the an-
swers to questions such as ‘which caption-generator best understands colours?’ and
‘can caption generators count?’. Existing n-gram evaluation metrics have little to of-
fer in terms of understanding the relative strengths and weaknesses, or error modes,



§4.3 Experiments 43

M1 SPICE Object Relation Attribute Color Count Size

Human 0.638 0.074 0.190 0.023 0.054 0.055 0.095 0.026
MSR 0.268 0.064 0.176 0.018 0.039 0.063 0.033 0.019
Google 0.273 0.063 0.173 0.018 0.039 0.060 0.005 0.009
MSR Captivator 0.250 0.062 0.174 0.019 0.032 0.054 0.008 0.009
Berkeley LRCN 0.246 0.061 0.170 0.023 0.026 0.030 0.015 0.010
Montreal/Toronto 0.262 0.061 0.171 0.023 0.026 0.023 0.002 0.010
m-RNN 0.223 0.060 0.170 0.021 0.026 0.038 0.007 0.004
N. Neighour 0.216 0.060 0.168 0.022 0.026 0.027 0.014 0.013
m-RNN (Baidu) 0.190 0.059 0.170 0.022 0.022 0.031 0.002 0.005
PicSOM 0.202 0.057 0.162 0.018 0.027 0.025 0.000 0.012
MIL 0.168 0.054 0.157 0.017 0.023 0.036 0.007 0.009
Brno 0.194 0.053 0.144 0.012 0.036 0.055 0.029 0.025
MLBL 0.167 0.052 0.152 0.017 0.021 0.015 0.000 0.004
NeuralTalk 0.166 0.051 0.153 0.018 0.016 0.013 0.000 0.007
ACVT 0.154 0.051 0.152 0.015 0.021 0.019 0.001 0.008
Tsinghua Bigeye 0.100 0.046 0.138 0.013 0.017 0.017 0.000 0.009
Random 0.007 0.008 0.029 0.000 0.000 0.000 0.004 0.000

Table 4.4: M1 (percentage of captions that are evaluated as better or equal to hu-
man caption) vs. SPICE scores by semantic proposition subcategory. Although the
MSR model outperforms the human baseline in terms of identifying object colour at-
tributes, none of the model-based entries exhibits a convincing ability to count (being

well below human performance).

of various models. However, SPICE has the useful property that it is defined over
tuples that are easy to subdivide into meaningful categories. For example, SPICE
F-scores can be quantified separately for object, attribute and relation tuples by re-
defining Equation 4.2, the mapping from scene graphs to tuples, using Equation 4.3,
Equation 4.4, or Equation 4.5, respectively. In general, scores can be analysed to any
arbitrary level by filtering the tuples generated by Equation 4.2.

To demonstrate this capability, in Table 4.4 we review the performance of 2015
COCO Captioning Challenge submissions in terms of overall SPICE score, detec-
tion of objects, relations and attributes, as well as colour perception, counting ability,
and understanding of size attributes. Here, colour, counting and size performance
is quantified by using word lists to identify subsets of attribute tuples that contain
colours, the numbers from one to ten, and size-related adjectives, respectively. This
affords us some insight, for example, into whether caption generators actually un-
derstand colour, and how good they are at counting. As shown in Table 4.4, the
MSR entry [Fang et al., 2015] —incorporating specifically trained visual detectors for
nouns, verbs and adjectives—exceeds the human F-score baseline for tuples contain-
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Flickr 8K [Hodosh et al., 2013] Composite [Aditya et al., 2015]

Bleu-1 0.32 0.26
Bleu-4 0.14 0.18
ROUGE-L 0.32 0.28
METEOR 0.42 0.35
CIDEr 0.44 0.36
SPICE 0.45 0.39

Inter-human 0.73 -

Table 4.5: Caption-level Kendall’s τ correlation between automatic evaluations and
human quality scores. At the caption-level SPICE modestly outperforms existing

metrics. All p-values (not shown) are less than 0.001.

ing colour attributes. However, there is little evidence that any of these models have
learned to count objects, as these scores are far below human level performance.

4.3.4 Caption-Level Correlation

In Table 4.5 we report caption-level correlations between automated metrics and hu-
man judgements on Flickr 8K [Hodosh et al., 2013] and the composite dataset [Aditya
et al., 2015]. At the caption level, SPICE achieves a rank correlation coefficient of 0.45
with Flickr 8K human scores, compared to 0.44 for CIDEr and 0.42 for METEOR.
Relative to the correlation between human scores of 0.73, this represents only a mod-
est improvement over existing metrics. However, as reported in Section 4.3.2, SPICE
more closely correlates with human judgement at the system level, which is more
important for comparing and evaluating models. Results are similar on the compos-
ite dataset, with SPICE achieving a rank correlation coefficient of 0.39, compared to
0.36 for CIDEr and 0.35 for METEOR. As this dataset only includes one score per
image-caption pair, inter-human agreement cannot be established.

4.3.5 Pairwise Accuracy

For consistency with previous evaluations on the PASCAL-50S dataset [Vedantam
et al., 2015], instead of reporting rank correlations we evaluate on this dataset using
accuracy. A metric is considered accurate if it gives an equal or higher score to the
caption in each candidate pair most commonly preferred by human evaluators. To
help quantify the impact of reference captions on performance, the number of refer-
ence captions available to the metrics is varied from 1 to 48. This approach follows
the original work on this dataset [Vedantam et al., 2015], although our results differ
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Figure 4.4: Pairwise classification accuracy of automated metrics at matching human
judgement on PASCAL-50S with 1-50 reference captions

Human-Correct Human-Incorrect Human-Model Model-Model All

Bleu-1 64.9 95.2 90.7 60.1 77.7
Bleu-2 56.6 93.0 87.2 58.0 73.7
ROUGE-L 61.7 95.3 91.7 60.3 77.3
METEOR 64.0 98.1 94.2 66.8 80.8
CIDEr 61.9 98.0 91.0 64.6 78.9
SPICE 63.3 96.3 87.5 68.2 78.8

Table 4.6: Caption-level classification accuracy of evaluation metrics at matching hu-
man judgement on PASCAL-50S with 5 reference captions. SPICE is best at matching
human judgements on pairs of model-generated captions (Model-Model). METEOR
is best at differentiating human and model captions (Human-Model) and human
captions where one is incorrect (Human-Incorrect). Bleu-1 performs best given two

correct human captions (Human-Correct)

slightly which may be due to randomness in the choice of reference caption subsets,
or differences in metric implementations (we use the COCO evaluation code).

On PASCAL-50S, there is little difference in overall performance between SPICE,
METEOR and CIDEr, as shown in Figure 4.4 left. However, of the four kinds of
captions pairs, SPICE performs best in terms of distinguishing between two model-
generated captions (Model-Model pairs) as illustrated in Table 4.6 and Figure 4.4
right. This is important as distinguishing better performing algorithms is the primary
motivation for this work.
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4.4 Chapter Summary

The interaction between vision and language is a promising area for research that is
essential to unlocking numerous practical applications in robotics and artificial intel-
ligence (AI). However, with the increasing focus on combining visual and linguistic
learning comes an increasing need for methods that can automatically evaluate the
language-based outputs of these models. In this chapter, we present SPICE, a novel
semantic evaluation metric that measures how effectively image captions recover ob-
jects, attributes and the relations between them.

Using a range of datasets and human evaluations, we show that SPICE outper-
forms existing methods for evaluating captions in terms of agreement with human
evaluations. Most importantly, on COCO—the largest image caption dataset—SPICE
is the most effective metric for automatically ranking image captioning models. We
further demonstrate that SPICE performance can be decomposed to answer questions
such as ‘which caption-generator best understands colours?’ and ‘can caption gen-
erators count?’, allowing the performance of any model can be analysed in greater
detail than with other automated metrics.

Since its release, the SPICE metric has been readily adopted by the image caption-
ing community, including on the official COCO test server. A year and a half since its
first publication, SPICE is still the only automatic evaluation metric that (correctly)
judges human image descriptions to be superior to those from all proposed image
captioning models5. We are aware that significant challenges still remain in semantic
parsing, but unlike n-gram metrics, SPICE offers scope for further improvements to
the extent that semantic parsing techniques continue to improve.

Conceptually, SPICE differs from existing textual similarity metrics in two key
respects. First, SPICE uses a common meaning representation—the scene graph—to
establish connections between the visual and linguistic modalities. Second, the SPICE
metric incorporates learning, notably within the dependency parser that constitutes
the first stage of the scene graph parser. However, in the difficult yet important task
of evaluating visually-grounded language there remains much to be explored. Recent
work from Wang et al. [2018] focuses on the problem of parsing text to scene graphs,
proposing further improvements to the SPICE parser. Yet, the reason why abstract
meaning representations (AMRs) [Banarescu et al., 2012] perform poorly as image
caption representations in initial experiments is not well understood. Given the large
ongoing effort to establish AMR corpora and parsers, in future work we would like
to further investigate the use of AMRs for image caption evaluation. Inspired by the

5Based on COCO C40 test leaderboard as at March 2018 (refer http://cocodataset.org/#captions-
leaderboard).
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adversarial training methods used by Generative Adversarial Networks [Goodfellow
et al., 2014], we also hope to see more research into learned caption evaluation metrics
[Cui et al., 2018]. We provide further examples of the SPICE calculation in Figures
4.5 and 4.6.
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Image I:

Candidate caption y:
A group of sheep and a sheep dog in a

large field.

Candidate scene graph Gy:

Reference captions S:
(1) A group of sheep is in a field.

(2) Sheep gathered together.
(3) A group of sheep and a dog.

(4) A flock of sheep obey the dog.
(5) A group of sheep are huddled

together on the gravel.

Reference scene graph GS:

SPICE score: 0.609 (Precision: 0.778,
Recall: 0.5)

Figure 4.5: Additional example of the SPICE calculation. This candidate caption
scores very highly, particularly on precision, as 7 out of 9 tuples in the candidate
scene graph are also found in the reference scene graph. The only missing tuples are
(dog, sheep) and (field, large), since the reference captions do not mention what type

of dog it is or the size of the field.
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Image I:

Candidate caption y:
A man in glasses holding a small dog.

Candidate scene graph Gy:

Reference captions S:
(1) A man holding small dog sitting at a

table.
(2) A man sits with a little dog on his lap.

(3) The dog is in the man’s lap.
(4) A man sitting at the table with a small

dog on his lap.
(5) A chihuahua is sitting at a table in a

man’s lap.

Reference scene graph GS:

SPICE score: 0.286 (Precision: 0.6, Recall:
0.188)

Figure 4.6: Additional example of the SPICE calculation. In this case, several parsing
errors can be seen, for example in the candidate caption ‘man in glasses holding a
small dog’ is incorrectly parsed to (glass, hold, dog) rather than (man, hold, dog) and
(man, in, glasses). However, the SPICE metric still rewards the candidate caption for

identifying (man), (dog), and (dog, small).
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Chapter 5

Bottom-Up and Top-Down Visual
Attention for Image Captioning
and VQA

Chapter 4 established SPICE as the most effective metric for automatic image cap-
tion evaluation. Armed with this metric and others, we now directly address the
challenges of image captioning [Chen et al., 2015] and visual question answering
(VQA) [Goyal et al., 2017]. In both these tasks it is often necessary to perform some
fine-grained visual processing, or even multiple steps of reasoning to generate high
quality outputs. As a result, visual attention mechanisms have been widely adopted
in both image captioning [Rennie et al., 2017; Lu et al., 2017; Yang et al., 2016b; Xu
et al., 2015] and VQA [Fukui et al., 2016; Lu et al., 2016; Xu and Saenko, 2016; Yang
et al., 2016a; Zhu et al., 2016]. These mechanisms improve performance by learning
to focus on the regions of the image that are salient and are currently based on deep
neural network architectures. In this chapter, we propose a combined bottom-up and
top-down attention mechanism that enables attention to be calculated at the level of
objects and other salient image regions. We argue that this is the natural basis for
attention to be considered. Applying this approach to image captioning and VQA,
we achieve state of the art results in both tasks, while simultaneously improving the
interpretability of the resulting models.

5.1 Attention Networks

An attention network or attention mechanism is a computational unit in a neural
network that restricts a large set of input representations by selectively focusing on
the most salient or relevant elements of the set. More formally, an attention mech-
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anism can be described as a mapping from a query q and a set of key-value pairs1

V = {(k1, v1), ..., (kk, vk)} to an attended output v̂, where the query, keys, values,
and output are all vectors.

Attention mechanisms are typically used as components with a larger network,
with q and V parametrised by neural network outputs and v̂ fed to a downstream
network. Their usefulness arises when the query q encodes some task context, and
the attended output v̂ captures the most salient aspects of the input V given the task
at hand. Attention can alleviate the information bottleneck of compressing a large set
of input representations into a single fixed-length vector, allowing for variably-sized
inputs. For example, in the task of visual question answering (VQA), the task con-
text2 q can be provided by a representation of the question, with V containing visual
representations from different parts of the image. As described further in Section
5.2, under the influence of the downstream loss function an attention mechanism can
learn to focus on the most salient areas of the image when answering questions. At-
tention mechanisms have been applied to both textual [Bahdanau et al., 2015b; Luong
et al., 2014] and visual inputs [Xu et al., 2015; Zhu et al., 2016], in which the elements
of V are typically represented by word vectors or spatial locations in a CNN feature
map, respectively.

To implement the attention mechanism, various approaches have been consid-
ered. So-called ’hard’ attention mechanisms typically determine v̂ by selecting a
single value from V [Xu et al., 2015]. However, in this thesis we focus on ’soft’ at-
tention mechanisms. To calculate the attended output vector v̂, these approaches
generate an attention score ai ∈ R for each element of V. The attended feature vec-
tor v̂ is calculated as a weighted sum over all the values in V after normalizing the
attention scores using a softmax:

α = softmax (a) (5.1)

v̂ =
k

∑
i=1

αivi (5.2)

Unlike hard attention networks, soft attention networks are typically fully differen-
tiable and can be trained using standard backpropagation methods [Xu et al., 2015].

Given set V and task context q, there is no single standard approach to modelling
the attention score vector a. Below, we list three simple alternatives proposed by

1It is also common to make no distinction between keys and values in V, in which case the input
can be specified as V = {v1, ..., vk}.

2We characterize the query q as the task context. In some other works, the output v̂ is referred to as
a context vector. The language used to describe attention networks has not been standardized.
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Luong et al. [2014]:

Dot ai = kT
i q (5.3)

General ai = kT
i Waq (5.4)

Concat ai = wT
a tanh (Wa[ki, q]) (5.5)

where Wa and wa are learned parameters. In this chapter our attention mechanisms
are based on Equation 5.5. However, many more sophisticated approaches have
also been considered. For example, in stacked attention [Yang et al., 2016a], multiple
attended outputs can be calculated by refining subsequent queries using the attended
outputs from previous queries. In contrast, multi-headed attention consists of several
attention layers with different parameters running in parallel [Vaswani et al., 2017].
While these works focus on the determination of the attention weights α, in this work
we focus on the determination of the attention candidates in V, which has received
much less scrutiny.

5.1.1 Bottom-Up vs. Top-Down Attention

In the human visual system, attention can be focused volitionally by top-down sig-
nals determined by the current task (e.g., looking for something), and automatically
by bottom-up signals associated with unexpected, novel or salient stimuli [Buschman
and Miller, 2007; Corbetta and Shulman, 2002]. In this chapter we adopt similar ter-
minology and refer to attention mechanisms driven by contextual information from
outside the current image as ‘top-down’, and purely image-driven attention mech-
anisms as ‘bottom-up’. This definition is consistent with early work in computer
vision that described top-down models as ‘goal-driven’, and bottom-up models as
‘image-driven’ [Navalpakkam and Itti, 2006], although to the best of our knowledge
the terms ‘bottom-up’ and ‘top-down’ have never been rigorously defined in the
computer vision literature.

Under our definition, most conventional visual attention mechanisms used in
image captioning and VQA are of the top-down variety. Contextual information is
provided by a representation of a partially-completed caption in the case of image
captioning [Rennie et al., 2017; Lu et al., 2017; Yang et al., 2016b; Xu et al., 2015], or a
representation of the question in the case of VQA [Fukui et al., 2016; Lu et al., 2016;
Xu and Saenko, 2016; Yang et al., 2016a; Zhu et al., 2016]. In each case attention is
applied to the output of one or more layers of a convolutional neural net (CNN), by
predicting a weighting for every spatial location in the (possibly interpolated) CNN
output. In these models, the number of candidate image regions is a hyperparame-
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Figure 5.1: Typically, attention models operate on CNN features corresponding to a
uniform grid of equally-sized image regions (left). Our approach enables attention

to be calculated at the level of objects and other salient image regions (right).

ter. However, determining the optimal number of image regions invariably requires
an unwinnable trade-off between coarse and fine levels of detail. Furthermore, the
arbitrary positioning of the regions with respect to image content may make it more
difficult to detect objects that are poorly aligned to regions and to bind visual con-
cepts associated with the same object. As illustrated conceptually in Figure 5.1, the
resulting input regions correspond to a uniform grid of equally sized and shaped
neural receptive fields – irrespective of the content of the image. To generate more
human-like captions and question answers, objects and other salient image regions
are a much more natural basis for attention [Egly et al., 1994; Scholl, 2001].

In this chapter we propose a combined bottom-up and top-down visual attention
mechanism. The bottom-up (image-driven) mechanism proposes a set of salient im-
age regions, with each region represented by a pooled convolutional feature vector.
Practically, we implement bottom-up attention using Faster R-CNN object detector
[Ren et al., 2015a], which represents a natural expression of a bottom-up attention
mechanism. The top-down (goal-driven) mechanism uses task-specific context to
predict an attention distribution over the image regions. The attended feature vector
is then computed as a weighted average of image features over all regions.
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Comparatively few previous works have considered applying attention to salient
image regions. We are aware of two papers. Jin et al. [2015] use selective search
[Uijlings et al., 2013] to identify salient image regions, which are filtered with a clas-
sifier then resized and CNN-encoded as input to an image captioning model with
attention. The Areas of Attention captioning model [Pedersoli et al., 2017] uses ei-
ther edge boxes [Zitnick and Dollár, 2014] or spatial transformer networks [Jaderberg
et al., 2015] to generate image features, which are processed using an attention model
based on three bi-linear pairwise interactions [Pedersoli et al., 2017]. In our work,
rather than using hand-crafted or differentiable region proposals [Uijlings et al., 2013;
Zitnick and Dollár, 2014; Jaderberg et al., 2015], we leverage Faster R-CNN [Ren
et al., 2015a], establishing a closer link between vision and language tasks and recent
progress in object detection. With this approach we are able to pretrain our region
proposals on object detection datasets. Conceptually, the advantages should be simi-
lar to pretraining visual representations on ImageNet [Russakovsky et al., 2015] and
leveraging significantly more cross-domain knowledge. We additionally apply our
method to VQA, establishing the broad applicability of our approach.

5.2 Approach

Given an image I, both our image captioning model and our VQA model take as
input a possibly variably-sized set of k image features, V = {v1, ..., vk}, vi ∈ RD,
such that each image feature encodes a salient region of the image. The spatial image
features V can be variously defined as the output of our bottom-up attention model,
or, following standard practice, as the spatial output layer of a CNN. We describe our
approach to implementing a bottom-up attention model in Section 5.2.1. In Section
5.2.2 we outline the architecture of our image captioning model and in Section 5.2.3
we outline the VQA model. We note that for the top-down attention component, both
models use simple one-pass attention mechanisms, as opposed to the more complex
schemes of recent models such as stacked, multi-headed, or bidirectional attention
[Yang et al., 2016a; Jabri et al., 2016; Kazemi and Elqursh, 2017; Lu et al., 2016] that
could also be applied.

5.2.1 Bottom-Up Attention Model

The definition of spatial image features V is generic. However, in this work we de-
fine spatial regions in terms of bounding boxes and implement bottom-up attention
using Faster R-CNN [Ren et al., 2015a]. Faster R-CNN is an object detection model
designed to identify instances of objects belonging to certain classes and localise them
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with bounding boxes. Other region proposal networks could also be trained as an
attentive mechanism [Redmon et al., 2016; Liu et al., 2016].

Faster R-CNN detects objects in two stages. The first stage, described as a Region
Proposal Network (RPN), predicts object proposals. A small network is slid over
features at an intermediate level of a CNN. At each spatial location the network
predicts a class-agnostic objectness score and a bounding box refinement for anchor
boxes of multiple scales and aspect ratios. Using greedy non-maximum suppression
with an intersection-over-union (IoU) threshold, the top box proposals are selected
as input to the second stage. In the second stage, region of interest (RoI) pooling
is used to extract a small feature map (e.g. 14× 14) for each box proposal. These
feature maps are then batched together as input to the final layers of the CNN. The
final output of the model consists of a softmax distribution over class labels and
class-specific bounding box refinements for each box proposal.

In this work, we use Faster R-CNN in conjunction with the ResNet-101 [He et al.,
2016a] CNN. To generate an output set of image features V for use in image cap-
tioning or VQA, we take the final output of the model and perform non-maximum
suppression for each object class using an IoU threshold. We then select all regions
where any class detection probability exceeds a confidence threshold. For each se-
lected region i, vi is defined as the mean-pooled convolutional feature from this
region, such that the dimension D of the image feature vectors is 2048. Used in this
fashion, Faster R-CNN effectively functions as a ‘hard’ attention mechanism, as only
a relatively small number of image bounding box features are selected from a large
number of possible configurations.

To pretrain the bottom-up attention model, we first initialise Faster R-CNN with
ResNet-101 pretrained for classification on ImageNet [Russakovsky et al., 2015]. We
then train on Visual Genome [Krishna et al., 2016] data. To aid the learning of good
feature representations, we add an additional training output for predicting attribute
classes such as ’blue’, ’muscular’, ’cooked’ or ’pointed’ (in addition to object classes
such as ’car’, ’man’, ’chicken’ or ’beard’). To predict attributes for region i, we con-
catenate the mean pooled convolutional feature vi with a learned embedding of the
ground-truth object class, and feed this into an additional output layer defining a
softmax distribution over each attribute class plus a ‘no attributes’ class.

The original Faster R-CNN multi-task loss function contains four components,
defined over the classification and bounding box regression outputs for both the
RPN and the final object class proposals respectively. We retain these components
and add an additional multi-class loss component to train the attribute predictor. In
Figure 5.2 we provide some examples of model output. For further implementation
details refer to Section 5.2.4.
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Figure 5.2: Example outputs from our Faster R-CNN bottom-up attention model.
Each bounding box is labelled with an attribute class followed by an object class.
Note however, that in captioning and VQA we utilize only the feature vectors – not

the predicted labels.
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Figure 5.3: Overview of the proposed captioning model. Two LSTM layers are used to
selectively attend to spatial image features {v1, ..., vk}. These features can be defined
as the spatial output of a CNN, or following our approach, generated using bottom-

up attention.

5.2.2 Captioning Model

Given a set of image features V, our proposed captioning model uses a ‘soft’ top-
down attention mechanism to weight each feature during caption generation, using
the existing partial output sequence as context. This approach is broadly similar to
several previous works [Rennie et al., 2017; Lu et al., 2017; Xu et al., 2015]. However,
the particular design choices outlined below make for a relatively simple yet high-
performing baseline model. Even without bottom-up attention, our captioning model
achieves performance comparable to state of the art on most evaluation metrics (refer
Table 5.2).

At a high level, the captioning model is composed of two Long Short-Term Mem-
ory (LSTM) layers [Hochreiter and Schmidhuber, 1997]. In the sections that follow
we will refer to the operation of the LSTM over a single time step using the following
notation:

ht = LSTM(xt, ht−1) (5.6)

where xt is the LSTM input vector and ht is the LSTM output vector. Refer to Section
2.4.1 for further background. We now describe the formulation of the LSTM input
vector xt and the output vector ht for each layer of the model. The overall captioning
model is illustrated in Figure 5.3.
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5.2.2.1 Top-Down Attention LSTM

Within the captioning model, we characterise the first LSTM layer as a top-down
visual attention model, and the second LSTM layer as a language model, indicating
each layer with superscripts in the equations that follow. Note that the bottom-up
attention model is described in Section 5.2.1, and in this section its outputs are simply
considered as features V. The input vector to the attention LSTM at each time step
consists of the previous output of the language LSTM, concatenated with the mean-
pooled image feature v̄ = 1

k ∑i vi and an encoding of the previously generated word,
given by:

x1
t = [h2

t−1, v̄, WeΠt] (5.7)

where We ∈ RE×|Σ| is a word embedding matrix for a vocabulary Σ, and Πt is one-
hot encoding of the input word at timestep t. These inputs provide the attention
LSTM with maximum context regarding the state of the language LSTM, the overall
content of the image, and the partial caption output generated so far, respectively.
The word embedding is learned from random initialisation without pretraining.

Given the output h1
t of the attention LSTM, at each time step t we generate a

normalised attention weight αi,t for each of the k image features vi as follows:

ai,t = wT
a tanh (Wvavi + Whah1

t ) (5.8)

αt = softmax (at) (5.9)

where Wva ∈ RH×V , Wha ∈ RH×M and wa ∈ RH are learned parameters. The
attended image feature used as input to the language LSTM is calculated as a convex
combination of all input features:

v̂t =
k

∑
i=1

αi,tvi (5.10)

5.2.2.2 Language LSTM

The input to the language model LSTM consists of the attended image feature, con-
catenated with the output of the attention LSTM, given by:

x2
t = [v̂t, h1

t ] (5.11)

Let y = (y1, ..., yT) denote an output sequence of length T containing words or other
tokens from vocabulary Σ. At each time step t the conditional distribution over
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possible output words is given by:

p(yt | y1:t−1) = softmax (Wph2
t + bp) (5.12)

where Wp ∈ R|Σ|×M and bp ∈ R|Σ| are learned weights and biases. The distribution
over complete output sequences is calculated as the product of conditional distribu-
tions:

p(y) =
T

∏
t=1

p(yt | y1:t−1) (5.13)

5.2.2.3 Objective

Given a target ground truth sequence y∗ and a captioning model with parameters θ,
we minimise the following cross entropy loss (refer Section 2.4.3):

LXE(θ) = −
T

∑
t=1

log(pθ(y∗t | y∗1:t−1)) (5.14)

For fair comparison with recent work [Rennie et al., 2017] we also report re-
sults optimised for CIDEr [Vedantam et al., 2015]. Initialising from the cross-entropy
trained model, we seek to minimise the negative expected score:

LR(θ) = −Ey∼pθ
[r(y)] (5.15)

where r is the score function (e.g., CIDEr). Following the approach described as Self-
Critical Sequence Training [Rennie et al., 2017] (SCST), the gradient of this loss can
be approximated:

∇θ LR(θ) ≈ −(r(ys)− r(ŷ))∇θ log pθ(ys) (5.16)

where ys is a sampled caption and r(ŷ) defines the baseline score obtained by greed-
ily decoding the current model. SCST (like other REINFORCE [Williams, 1992] algo-
rithms) explores the space of captions by sampling from the policy during training.
This gradient tends to increase the probability of sampled captions that score higher
than the score from the current model.

In our experiments, we follow SCST but we speed up the training process by
restricting the sampling distribution. Using beam search decoding (refer Section
2.4.3), we sample only from those captions in the decoded beam. Empirically, we
have observed when decoding using beam search that the resulting beam typically
contains at least one very high scoring caption – although frequently this caption
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Figure 5.4: Overview of the VQA model used in experiments. A deep neural net-
work implements a joint embedding of the question and image features {v1, ..., vk} .
These features can be defined as the spatial output of a CNN, or following our ap-
proach, generated using bottom-up attention. Output is generated by a multi-label
classifier operating over a fixed set of candidate answers. Gray numbers indicate
the dimensions of the vector representations between layers. Yellow elements use

learned parameters.

does not have the highest log-probability of the set. In contrast, we observe that very
few unrestricted caption samples score higher than the greedily-decoded caption.
Using this approach, we complete CIDEr optimisation in a single epoch.

5.2.3 VQA Model

In this section we outline the VQA model used in experiments to evaluate the pro-
posed bottom-up and top-down attention mechanism. We note that this model was
developed by Damien Teney and is not a contribution of this thesis. For full specifics of the
VQA model including a detailed exploration of architectures and hyperparameters,
please refer to Teney et al. [2018].

Given a set of spatial image features V, similarly to our captioning model the
VQA model uses a ‘soft’ top-down attention mechanism to weight each feature. In
this case, however, a question representation is used as context. As illustrated in
Figure 5.4, the proposed model implements the well-known joint multimodal em-
bedding of the question and the image, followed by a prediction of regression of
scores over a set of candidate answers. This approach has been the basis of numer-
ous previous models [Jabri et al., 2016; Kazemi and Elqursh, 2017; Teney and van den
Hengel, 2016]. However, as with our captioning model, implementation decisions are
important to ensure that this relatively simple model delivers high performance.

The learned non-linear transformations within the network are implemented with
gated hyperbolic tangent activations [Dauphin et al., 2016]. These are a special case
of highway networks Srivastava et al. [2015] that have shown a strong empirical
advantage over traditional ReLU or tanh layers. Each of our ‘gated tanh’ layers
implements a function fa : x ∈ Rm → y ∈ Rn with parameters a = {W, W ′, b, b′}
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defined as follows:

ỹ = tanh (Wx + b) (5.17)

g = σ(W ′x + b′) (5.18)

y = ỹ ◦ g (5.19)

where σ is the sigmoid activation function, W, W ′ ∈ Rn×m are learned weights, b, b′ ∈
Rn are learned biases, and ◦ is the Hadamard (element-wise) product. The vector g
acts multiplicatively as a gate on the intermediate activation ỹ.

Our proposed approach first encodes each question as the hidden state q of a
gated recurrent unit [Cho et al., 2014] (GRU), with each input word represented
using a learned word embedding. Similar to Equation 5.8, given the output q of
the GRU, we generate an unnormalised attention weight ai for each of the k image
features vi as follows:

ai = wT
a fa([vi, q]) (5.20)

where wT
a is a learned parameter vector. Equation 5.9 and Equation 5.10 (neglecting

subscripts t) are used to calculate the normalised attention weight and the attended
image feature v̂. The distribution over possible output responses y is given by:

h = fq(q) ◦ fv(v̂) (5.21)

p(y) = σ(Wo fo(h)) (5.22)

where h is a joint representation of the question and the image, and Wo ∈ R|Σ|×M are
learned weights.

5.2.4 Implementation Details

5.2.4.1 Bottom-Up Attention Model

We use the Visual Genome [Krishna et al., 2016] dataset to pretrain our Faster R-
CNN bottom-up attention model. The dataset contains 108K images densely an-
notated with scene graphs containing objects, attributes and relationships, as well
as 1.7M visual question answers. However, for pretraining the bottom-up attention
model, only the object and attribute annotations are used. We reserve 5K images
for validation, and 5K images for future testing, treating the remaining 98K images
as training data. Approximately 51K Visual Genome images are also found in the
COCO captions dataset [Lin et al., 2014b], so we are careful to avoid contamination



§5.2 Approach 63

Object Detections Attribute Detections
mAP@0.5 w-mAP@0.5 mAP@0.5 w-mAP@0.5

COCO [Ren et al., 2015a] 41.5 - - -
Visual Genome 10.2 15.1 7.8 27.8

Table 5.1: Faster R-CNN with ResNet-101 detection scores on the COCO and Vi-
sual Genome validation sets. We report both micro-averaged and macro-average
mean Average Precision at IoU=0.5 (denoted mAP@0.5 and w-mAP@0.5 respec-
tively), where macro-averaging means we compute mAP@0.5 for each class before
averaging over classes. Due to the large number of classes, class imbalance, as well
as the presence of many overlapping classes and hard-to-localise classes, Faster R-
CNN detection performance on Visual Genome is ostensibly poor. However, the

resulting features perform well in downstream tasks.

of our COCO validation and test sets. We ensure that any images found in both
datasets are contained in the same split in both datasets.

As the object and attribute annotations consist of freely annotated strings, rather
than classes, we perform extensive cleaning and filtering of the training data. Begin-
ning with the most frequent 2,000 object strings and 500 attribute strings (hereafter
considered classes), we manually remove abstract classes that exhibit poor detection
performance in initial experiments. This leaves a final training set containing 1,600
object classes and 400 attribute classes. Note that we do not merge or remove over-
lapping classes (e.g. ‘person’, ‘man’, ‘guy’), classes with both singular and plural
versions (e.g. ‘tree’, ‘trees’) and classes that are difficult to precisely localise (e.g.
‘sky’, ‘grass’, ‘buildings’). Due to the large number of classes, as well as the pres-
ence of overlapping classes and classes that can’t be precisely localised (e.g. ‘street’,
‘field’), the detection performance of the Faster R-CNN model trained in this manner
is low by conventional standards (refer Table 5.1). However, our focus is the perfor-
mance of the resulting features in downstream tasks (e.g. image captioning, VQA)
rather than detection performance.

In the Faster R-CNN non-max suppression operations we use an intersection-
over-union (IoU) threshold of 0.7 for region proposal suppression, and 0.3 for object
class suppression. To select salient image regions for input to the image captioning
and VQA models, a class detection confidence threshold of 0.2 is used. This allows
the number of regions per image k to vary with the complexity of the image, up to
a maximum of 100. However, in initial experiments we find that simply selecting the
top 36 features in each image works almost as well in both downstream tasks. Since
Visual Genome [Krishna et al., 2016] contains a relatively large number of annotations
per image, the model is relatively intensive to train. Using 8 Nvidia M40 GPUs, we
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take around 5 days to complete 380K training iterations, although we suspect that
faster training regimes could also be effective.

5.2.4.2 Captioning and VQA Models

In the captioning model, we set the number of hidden units M in each LSTM to 1,000,
the number of hidden units H in the attention layer to 512, and the size of the input
word embedding E to 1,000. In training, we use a simple learning rate schedule,
beginning with a learning rate of 0.01 which is reduced to zero on a straight-line
basis over 60K iterations using a batch size of 100 and a momentum parameter of
0.9. Training using two Nvidia Titan X GPUs takes around 9 hours (including less
than one hour for CIDEr optimisation). During optimisation and decoding we use
a beam size of 5. When decoding we also enforce the constraint that a single word
cannot be predicted twice in a row. Note that in both our captioning and VQA
models, image features are fixed and not finetuned.

In the VQA model, we use 300-dimensional word embeddings, initialised with
pretrained GloVe vectors [Pennington et al., 2014], and we use hidden states of di-
mension 512. We train the VQA model using AdaDelta [Zeiler, 2012] and regularise
with early stopping. The training of the model takes in the order of 12–18 hours on
a single Nvidia K40 GPU. Refer to Teney et al. [2018] for further details of the VQA
model implementation.

5.3 Evaluation

5.3.1 Datasets

5.3.1.1 COCO

To evaluate our proposed captioning model, we use the COCO 2014 captions dataset
[Lin et al., 2014b]. For validation of model hyperparameters and offline testing, we
use the ‘Karpathy’ splits [Karpathy and Fei-Fei, 2015] that have been used extensively
for reporting results in prior work. This split contains 113K training images with five
captions each, and 5K images respectively for validation and testing. Our COCO
test server submission is trained on the entire COCO 2014 training and validation set
(123K images). For further details regarding the COCO dataset refer to Section 3.2.

We follow standard practice and perform only minimal text pre-processing, con-
verting all sentences to lower case, tokenizing on white space, and filtering words that
do not occur at least five times, resulting in a model vocabulary of 10,010 words. To
evaluate caption quality, we use the standard automatic evaluation metrics, namely
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SPICE (refer Chapter 4 and Anderson et al. [2016]), CIDEr [Vedantam et al., 2015],
METEOR [Denkowski and Lavie, 2014], ROUGE-L [Lin, 2004] and Bleu [Papineni
et al., 2002].

5.3.1.2 VQA v2.0

To evaluate our proposed VQA model, we use the recently introduced VQA v2.0
dataset [Goyal et al., 2017], which attempts to minimise the effectiveness of learning
dataset priors by balancing the answers to each question. The dataset, which was
used as the basis of the 2017 VQA Challenge3, contains 1.1M questions with 11.1M
answers relating to COCO images. We perform standard question text preprocessing
and tokenization. Questions are trimmed to a maximum of 14 words for computa-
tional efficiency. The set of candidate answers is restricted to correct answers in the
training set that appear more than 8 times, resulting in an output vocabulary size of
3,129.

When training the VQA model, we augment the VQA v2.0 training data with
Visual Genome [Krishna et al., 2016] question and answer pairs provided the correct
answer is already present in model’s answer vocabulary. This represents about 30%
of the available Visual Genome data, or 485K questions. Our VQA test server sub-
missions are also trained on the VQA v2.0 validation set. To evaluate answer quality,
we report accuracies using the standard VQA metric [Antol et al., 2015], which takes
into account the occasional disagreement between annotators for the ground truth
answers. For further details regarding the VQA v2.0 and Visual Genome datasets
refer to Section 3.3 and Section 3.4 respectively.

5.3.2 ResNet Baseline

To quantify the impact of bottom-up attention, in both our captioning and VQA
experiments we evaluate our full model (Up-Down) against prior work as well as an
ablated baseline. In each case, the baseline (ResNet), uses a ResNet [He et al., 2016a]
CNN pretrained on ImageNet [Russakovsky et al., 2015] to encode each image in
place of the bottom-up attention mechanism.

In image captioning experiments, similarly to previous work [Rennie et al., 2017]
we encode the full-sized input image with the final convolutional layer of Resnet-101,
and use bilinear interpolation to resize the output to a fixed size spatial representa-
tion of 10×10. This is equivalent to the maximum number of spatial regions used
in our full model. In VQA experiments, we encode the resized input image with
ResNet-200 [He et al., 2016b]. In separate experiments we use evaluate the effect of

3http://www.visualqa.org/challenge.html
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Bleu-1 Bleu-4 METEOR ROUGE-L CIDEr SPICE

Cross-Entropy Optimisation:
SCST:Att2in - 31.3 26.0 54.3 101.3 -
SCST:Att2all - 30.0 25.9 53.4 99.4 -
Ours: ResNet 74.5 33.4 26.1 54.4 105.4 19.2
Ours: Up-Down 77.2 36.2 27.0 56.4 113.5 20.3
Ours: Relative Improvement 4% 8% 3% 4% 8% 6%

CIDEr Optimisation:
SCST:Att2in - 33.3 26.3 55.3 111.4 -
SCST:Att2all - 34.2 26.7 55.7 114.0 -
Ours: ResNet 76.6 34.0 26.5 54.9 111.1 20.2
Ours: Up-Down 79.8 36.3 27.7 56.9 120.1 21.4
Ours: Relative Improvement 4% 7% 5% 4% 8% 6%

Table 5.2: Single-model image captioning performance on the COCO Karpathy test
split. Our baseline ResNet model obtains similar results to SCST [Rennie et al., 2017],
the existing state of the art on this test set. Illustrating the contribution of bottom-up
attention, our Up-Down model achieves 3–8% relative improvements across all met-
rics, regardless of whether cross-entropy loss or CIDEr-based optimisation methods

are used.

SPICE Objects Attributes Relations Color Count Size

Cross-Entropy Optimisation:
Ours: ResNet 19.2 35.4 8.6 5.3 12.2 4.1 3.9
Ours: Up-Down 20.3 37.1 9.2 5.8 12.7 6.5 4.5

CIDEr Optimisation:
Ours: ResNet 20.2 37.0 9.2 6.1 10.6 12.0 4.3
Ours: Up-Down 21.4 39.1 10.0 6.5 11.4 18.4 3.2

Table 5.3: Breakdown of SPICE F-scores over various tuple subcategories on the
COCO Karpathy test split. Our Up-Down model outperforms the ResNet baseline
at identifying objects, as well as detecting object attributes and the relations between

objects.
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varying the size of the spatial output from its original size of 14×14, to 7×7 (using
bilinear interpolation) and 1×1 (i.e., mean pooling without attention).

5.3.3 Image Captioning Results

In Table 5.2 we report the performance of our full model and the ResNet baseline
in comparison to the existing state of the art Self-critical Sequence Training [Rennie
et al., 2017] (SCST) approach on the test portion of the Karpathy splits. For fair
comparison, results are reported for models trained with both standard cross-entropy
loss, and models optimised for CIDEr score. Note that the SCST approach uses
ResNet-101 encoding of full images, similar to our ResNet baseline. All results are
reported for a single model with no fine-tuning of the input ResNet / R-CNN model.
However, the SCST results are selected from the best of four random initialisations,
while our results are outcomes from a single initialisationn.

Relative to the SCST models, our ResNet baseline obtains slightly better perfor-
mance under cross-entropy loss, and slightly worse performance when optimised
for CIDEr score. After incorporating bottom-up attention, our full Up-Down model
shows significant improvements across all metrics regardless of whether cross-entropy
loss or CIDEr optimisation is used. Using just a single model, we obtain the best re-
ported results for the Karpathy test split. As illustrated in Table 5.3, the contribution
from bottom-up attention is broadly based, illustrated by improved performance in
terms of identifying objects, object attributes and also the relationships between ob-
jects (refer to Section 4.3.3 for a discussion of these SPICE subcategories).

Table 5.4 reports the performance of 4 ensembled models trained with CIDEr op-
timisation on the official COCO evaluation server, along with the highest ranking
previously published results. At the time of submission (18 July 2017), we outper-
form all other test server submissions on all reported evaluation metrics.

To help qualitatively evaluate our attention methodology, in Figure 5.5 we vi-
sualise the attended image regions for different words generated by our Up-Down
captioning model. As indicated by this example, our approach is equally capable
of focusing on fine details or large image regions. This capability arises because the
attention candidates in our model consist of many overlapping regions with varying
scales and aspect ratios – each aligned to an object, several related objects, or an
otherwise salient image patch.

Unlike conventional approaches, when a candidate attention region corresponds
to an object, or several related objects, all the visual concepts associated with those
objects appear to be spatially co-located – and are processed together. In other words,
our approach is able to consider all of the information pertaining to an object at once.
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Bleu-1 Bleu-2 Bleu-3 Bleu-4
c5 c40 c5 c40 c5 c40 c5 c40

Review Net [Yang et al., 2016b] 72.0 90.0 55.0 81.2 41.4 70.5 31.3 59.7
Adaptive [Lu et al., 2017] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7
PG-BCMR [Liu et al., 2017b] 75.4 - 59.1 - 44.5 - 33.2 -
SCST:Att2all [Rennie et al., 2017] 78.1 93.7 61.9 86.0 47.0 75.9 35.2 64.5
LSTM-A3 [Yao et al., 2017b] 78.7 93.7 62.7 86.7 47.6 76.5 35.6 65.2
Ours: Up-Down 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5

METEOR ROUGE-L CIDEr SPICE
c5 c40 c5 c40 c5 c40 c5 c40

Review Net [Yang et al., 2016b] 25.6 34.7 53.3 68.6 96.5 96.9 18.5 64.9
Adaptive [Lu et al., 2017] 26.4 35.9 55.0 70.5 104.2 105.9 19.7 67.3
PG-BCMR [Liu et al., 2017b] 25.7 - 55 - 101.3 - - -
SCST:Att2all [Rennie et al., 2017] 27.0 35.5 56.3 70.7 114.7 116.7 20.7 68.9
LSTM-A3 [Yao et al., 2017b] 27 35.4 56.4 70.5 116 118 - -
Ours: Up-Down 27.6 36.7 57.1 72.4 117.9 120.5 21.5 71.5

Table 5.4: Highest ranking published image captioning results on the online COCO
test server. Our submission, an ensemble of 4 models optimised for CIDEr with dif-
ferent initialisations, outperformed previously published work on all reported met-
rics. At the time of submission (18 July 2017), we also outperformed all unpublished

test server submissions.

Two men playing frisbee in a dark field.

Figure 5.5: Example of a generated caption showing attended image regions. For
each generated word, we visualise the attention weights on individual pixels, out-
lining the region with the maximum attention weight in red. Avoiding the conven-
tional trade-off between coarse and fine levels of detail, our model focuses on both
closely-cropped details, such as the frisbee and the green player’s mouthguard when
generating the word ‘playing’, as well as large regions, such as the night sky when

generating the word ‘dark’.
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Resnet – A man sitting on a toilet in a bathroom.

Up-Down – A man sitting on a couch in a bathroom.

Figure 5.6: Qualitative differences between attention methodologies in caption gen-
eration. The selected image is unusual because it depicts a bathroom containing
a couch but no toilet. Nevertheless, the baseline ResNet model (top) hallucinates
a toilet, presumably from language priors. In contrast, our Up-Down model (bot-
tom) identifies the out-of-context couch and provides more interpretable attention

weights.

This is also a natural way for attention to be implemented. In the human visual
system, the problem of integrating the separate features of objects in the correct
combinations is known as the feature binding problem, and experiments suggest that
attention plays a central role in the solution [Treisman and Gelade, 1980; Treisman,
1982]. We illustrate the qualitative differences between attention methodologies in
Figure 5.6, demonstrating the improved interpretability of the bottom-up and top-
down attention weights.

5.3.4 VQA Results

In Table 5.5 we report the single model performance of our full Up-Down VQA model
relative to several ResNet baselines on the VQA v2.0 validation set. The addition of
bottom-up attention provides a significant improvement over the best ResNet base-
line across all question types, even though the ResNet baseline uses approximately
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Yes/No Number Other Overall

Ours: ResNet (1×1) 76.0 36.5 46.8 56.3
Ours: ResNet (14×14) 76.6 36.2 49.5 57.9
Ours: ResNet (7×7) 77.6 37.7 51.5 59.4
Ours: Up-Down 80.3 42.8 55.8 63.2
Relative Improvement 3% 14% 8% 6%

Table 5.5: Single-model performance on the VQA v2.0 validation set. The use of
bottom-up attention in the Up-Down model provides a significant improvement over
the best ResNet baseline across all question types, even though the ResNet baselines

use almost twice as many convolutional layers.

Yes/No Number Other Overall

Prior [Goyal et al., 2017] 61.2 0.4 1.2 26.0
Language-only [Goyal et al., 2017] 67.0 31.6 27.4 44.3
d-LSTM+n-I [Lu et al., 2015] 73.5 35.2 41.8 54.2
MCB [Fukui et al., 2016] 78.8 38.3 53.4 62.3
JuneflowerIvaNlpr 81.1 41.6 57.8 65.7
UPMC-LIP6 82.1 41.1 57.1 65.7
LV NUS 81.9 46.3 58.3 66.8
Athena 82.5 44.2 60.0 67.6
HDU-USYD-UNCC 84.5 45.4 59.0 68.1
Ours: Up-Down 86.6 48.6 61.2 70.3

Table 5.6: VQA v2.0 test-standard server accuracy as at 8 August 2017, ranking our
submission against the highest ranked published and unpublished work. The result
for the d-LSTM+n-I and MCB models are as reported in Goyal et al. [2017]. Our
approach, an ensemble of 30 models, outperformed all other leaderboard entries,

achieving first place in the 2017 VQA Challenge.

twice as many convolutional layers. Table 5.6 reports the performance of 30 ensem-
bled models on the official VQA 2.0 test-standard evaluation server, along with the
previously published baseline results and the highest ranking other entries. At the
time of submission (8 August 2017), we outperform all other test server submissions.
Our submission also achieved first place in the 2017 VQA Challenge. We include an
example of VQA attention in Figure 5.7.

5.4 Chapter Summary

In this chapter we present a novel combined bottom-up and top-down visual atten-
tion mechanism. Our approach enables attention to be calculated more naturally
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Question: What room are they in? Answer: kitchen

Figure 5.7: VQA example illustrating attention output. Given the question ‘What
room are they in?’, the model focuses on the stovetop, generating the correct answer

‘kitchen’.

at the level of objects and other salient regions, improving the interpretability of
the resulting attention weights. Empirically, we find that the inclusion of bottom-
up attention has a significant positive benefit for image captioning. Our results on
the COCO test server establish a new state of the art for the task, achieving CIDEr,
SPICE, and Bleu-4 scores of 117.9, 21.5, and 36.9, respectively (outperforming all pub-
lished and unpublished work at the time of test server submission). Demonstrating
the broad applicability of the method, we additionally present a VQA model using
the same bottom-up attention features. Using this model we obtain first place in
the 2017 VQA Challenge, achieving 70.3% overall accuracy on the VQA v2.0 test-
standard server (and 69.0% overall accuracy on the VQA v2.0 test-challenge dataset
split).

Although visual attention mechanisms have been widely studied, perhaps sur-
prisingly our work is one of the first to more carefully consider the determination of
attention candidates (shifting from a uniform grid of neural receptive fields to more
natural proposals based on objects and other salient image regions). Given the com-
plexity of biological attention mechanisms, which can be feature-based, object-based,
spatial and temporal [Scholl, 2001], we will be surprised if further empirical inves-
tigation of visual attention mechanisms does not yield positive results. There are
also exciting opportunities for future work in the unsupervised and semi-supervised
training of visual attention mechanisms.

At a high level, our work more closely unifies tasks involving visual and linguis-
tic understanding with recent progress in object detection. We hope to see vision
and language researchers continue to take advantage of ongoing research into object
detection—as we did by using Faster R-CNN [Ren et al., 2015b]—rather than relying
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exclusively on convolutional neural networks (CNNs) pretrained for whole-image
classification. In our work, the Faster R-CNN model is pretrained and fixed, mean-
ing that input image region locations and their associated feature representations are
not influenced by the loss function of the task at hand. Future work could investigate
training the Faster R-CNN (including the region proposal network) in an end-to-end
fashion. Also, as our model utilizes only object and attributes, incorporating pre-
dictions of the relations between pairs of objects into VQA and captioning models
may also provide benefits. Nevertheless, while these are important research direc-
tions, the immediate benefits of our approach may be captured by simply replacing
pretrained CNN features with pretrained bottom-up attention features (i.e., our pre-
trained Faster R-CNN [Ren et al., 2015a] outputs), which we have made available to
the community. We provide further examples in Figures 5.8–5.11.
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A group of people are playing a video game.

A brown sheep standing in a field of grass.

Two hot dogs on a tray with a drink.

Figure 5.8: Further examples of generated captions showing attended image regions.
Attention is given to fine details, such as: (1) the man’s hands holding the game
controllers in the top image, and (2) the sheep’s legs when generating the word
‘standing’ in the middle image. Our approach can avoid the trade-off between coarse

and fine levels of detail.
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Two elephants and a baby elephant walking together.

A close up of a sandwich with a stuffed animal.

A dog laying in the grass with a frisbee.

Figure 5.9: Further examples of generated captions showing attended image regions.
The first example suggests an understanding of spatial relationships when generating
the word ‘together’. The middle image demonstrates the successful captioning of a
compositionally novel scene. The bottom example is a failure case. The dog’s pose
is mistaken for laying, rather than jumping – possibly due to poor salient region

cropping that misses the dog’s head and feet.
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Question: What color is illuminated on the traffic light? Answer left: green. Answer
right: red.

Question: What is the man holding? Answer left: phone. Answer right: controller.

Question: What color is his tie? Answer left: blue. Answer right: black.

Question: What sport is shown? Answer left: frisbee. Answer right: skateboarding.

Question: Is this the handlebar of a motorcycle? Answer left: yes. Answer right: no.

Figure 5.10: Further examples of successful visual question answering results, show-
ing attended image regions.
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Question: What is the name of the realty company? Answer left: none. Answer
right: none.

Question: What is the bus number? Answer left: 2. Answer right: 23.

Question: How many cones have reflective tape? Answer left: 2. Answer right: 1.

Question: How many oranges are on pedestals? Answer left: 2. Answer right: 2.

Figure 5.11: Examples of visual question answering (VQA) failure cases. Although
our simple VQA model has limited reading and counting capabilities, the attention

maps are often correctly focused.



Chapter 6

Guided Image Captioning using
Constrained Beam Search

In Chapter 5 we introduced a bottom-up and top-down visual attention mecha-
nism, demonstrating improved performance on standard image captioning and vi-
sual question answering (VQA) datasets [Chen et al., 2015; Goyal et al., 2017]. How-
ever, as discussed in Chapter 3, the images underlying both these datasets are pri-
marily concerned with only 91 objects and their interactions. As a result, models
trained on these datasets do not generalise well to out-of-domain images containing
novel scenes or objects [Tran et al., 2016]. This limitation severely hinders the use
of these models in real applications. To address this problem, in this chapter we
propose a flexible approach to combining the output of image taggers and image
captioning models at test time, without any joint training, in order to scale existing
image captioning models to many more visual concepts. Our approach—using a
novel constraint-based decoding algorithm we describe as constrained beam search—
achieves state of the art results on a held-out version of the COCO image captioning
dataset [Hendricks et al., 2016].

6.1 Test-Time Novel Object Captioning

We wish to caption an image for which some high-confidence image tags (or other
text fragments) are available during caption generation (i.e., at test time). These im-
age tags may originate from a predictive model such as an image tagger [Chen et al.,
2013; Zhang et al., 2016b] or an object detector [Ren et al., 2015b; Krause et al., 2016].
Alternatively, as many image collections are annotated with semantic attributes and
/ or object classes, the image tags may reflect the ground-truth. As illustrated in Fig-
ure 6.1, our goal is to use these image tags to improve the output of a recurrent neural
network (RNN) image captioning model. In particular, we would like to successfully
caption images containing novel objects—i.e., objects that are not represented in the

77
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Input image containing 

previously unseen object 

(‘suitcase’)

CNN-RNN

Captioning 

Model

A cat sitting inside of

a suitcase.
cat, suitcase, 

inside

Constrained

Beam

Search

Beam

Search

A cat sitting on top of

a refrigerator.

Image Tags

Figure 6.1: We successfully caption images containing previously unseen objects by
incorporating image tags during RNN decoding. Actual example from experiments

in Section 6.4.2.

available image-caption training data—when given the correct object class as an im-
age tag. This scenario is identical to the problem of novel object captioning posed by
Hendricks et al. [2016], except that we will make use of image tags at test time, rather
than during training. Our problem formulation is arguably more challenging, as it
prevents joint training of the image tagging and image captioning components of
the resulting system. However, our loosely-coupled approach also offers several ad-
vantages, as it permits the re-use of existing models, which can be combined at test
time, and also allows captioning models to take advantage of ground-truth image
tags when available.

This scenario poses two key challenges. First, RNNs are generally opaque, and
difficult to influence at test time. Second, for previously unseen objects, image tags
will include words that are not present in the RNN vocabulary. We address the first
challenge (guidance) by proposing constrained beam search to guarantee the inclusion
of selected words or phrases in the output of an RNN, while leaving the model
free to determine the syntax and additional details. Constrained beam search is an
approximate search algorithm capable of enforcing any constraints over resulting
output sequences that can be expressed in a finite-state machine (FSM). With regard
to the second challenge (vocabulary), empirically we demonstrate that an RNN can
successfully generalise from similar words if both the input embedding and output
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projection layers contain fixed, pretrained word embeddings.

6.2 Related Work

Several papers have proposed models intended to describe images containing ob-
jects for which no image-caption training data exists, i.e., novel object captioning.
The Deep Compositional Captioner (DCC) [Hendricks et al., 2016] uses a CNN im-
age tagger to predict words that are relevant to an image, combined with an RNN
language model to estimate probabilities over word sequences. The tagger and lan-
guage models are pretrained separately, then finetuned jointly using the available
image-caption data.

Building on the DCC approach, the Novel Object Captioner (NOC) [Venugopalan
et al., 2017] is contemporary work with ours that also uses pretrained word embed-
dings in both the input and output layers of the language model. Since the publi-
cation of our approach, additional methods have also been proposed using a word
copying mechanism [Yao et al., 2017a] and neural slot-filling [Lu et al., 2018]. More
generally, the effectiveness of incorporating semantic attributes (i.e., image tags) into
caption model training for in-domain data has been established by several works
[Fang et al., 2015; Wu et al., 2016a; Elliot and de Vries, 2015].

Overall, our work differs fundamentally from these approaches as we do not
attempt to introduce semantic attributes, image tags or other text fragments into the
learning algorithm. Instead, we incorporate text fragments during model decoding.
To the best of our knowledge we are the first to consider this more loosely-coupled
approach, which allows the model to take advantage of information not available at
training time, and avoids the need to retrain the captioning model if the source of
text fragments is changed.

6.3 Approach

In this section we briefly review beam search before describing in detail the con-
strained beam search algorithm, its application to image captioning, and our ap-
proach to expanding model vocabularies with pretrained word embeddings.

6.3.1 RNN Decoding with Beam Search

While various approaches to image caption generation have been considered, a large
body of recent work—including our own work in Chapter 5—is dedicated to neural
network approaches [Donahue et al., 2015; Mao et al., 2015; Karpathy and Fei-Fei,
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2015; Vinyals et al., 2015; Devlin et al., 2015a]. These approaches typically use a
pretrained Convolutional Neural Network (CNN) image encoder, combined with a
Recurrent Neural Network (RNN) decoder trained to predict the next output word,
conditioned on previous words and the image. In each case the decoding process re-
mains the same—captions are generated by searching over output sequences greedily
or with beam search. Similar decoding approaches are typically used for many se-
quence generation tasks including machine translation [Sutskever et al., 2014].

More formally, let y = (y1, ..., yT) denote an output sequence of length T contain-
ing words or other tokens from vocabulary Σ. Given an RNN modelling a probability
distribution over such sequences, the RNN decoding problem is to find the output
sequence with the maximum log-probability, where the log probability of any partial
sequence yt of length t is typically given by Θ(yt) = ∑t

j=1 log p(yj | y1, ..., yj−1). As il-
lustrated in Algorithm 1, at each decoding time step t beam search stores only the the
b most likely partial sequences, where b is known as the beam size. We will denote
the set of all partial solutions held at the start of time t by Bt−1 = {yt−1,1, ..., yt−1,b}.
At each time step t, a candidate set Et is generated by considering all possible next
word extensions:

Et =
{
(yt−1, w) | yt−1 ∈ Bt−1, w ∈ Σ

}
(6.1)

The beam Bt is updated by retaining only the b most likely sequences in Et. This
can be trivially implemented by sorting the partial sequences in Et by their log-
probabilities and retaining the top b. Initialisation is performed by inserting an empty
sequence into the beam, i.e. B0 := {ε} such that E1 = Σ. The algorithm terminates
when the beam contains a completed sequence (e.g., containing an end marker) with
higher log probability than all incomplete sequences. Refer to Section 2.4 or Koehn
[2010] for further background.

6.3.2 Constrained Beam Search

We introduce constrained beam search, a multiple beam approximate search algo-
rithm that enforces constraints in the sequence generation process. To fix ideas,
suppose that we wish to generate word sequences containing at least one word from
each disjunctive constraint set D1 = {chair, chairs} and D2 = {desk, table}. As an
example, the word sequence ‘a table surrounded by chairs’ would satisfy these con-
straints.

We first need a method for checking if the constraints are satisfied by a given
sequence. For this we can use the finite-state machine (FSM) illustrated in Figure
6.2, with start state s0 and accepting state s3, which recognises sequences satisfying
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these constraints. More generally, any set of constraints that can be represented with
a regular expression can also be expressed as an FSM (either deterministic or non-
deterministic) that recognises sequences satisfying those constraints [Sipser, 2012].
Therefore, we will assume that constraints are provided in the form of a FSM that
accepts sequences satisfying those constraints, and that the structure of the FSM
is determined by the problem setting (in our work, the FSM is determined by the
detected image tags, as described in Section 6.3.3). Formally, an FSM is defined by
(Σ, S, s0, δ, F) where Σ is the model vocabulary, S is the set of states, s0 ∈ S is the
initial state, δ : S× Σ→ S is the state-transition function that maps states and words
to states, and F ⊆ S is the set of final or accepting states.

To decode output sequences under these constraints, a naive approach might
impose the constraints on sequences produced at the end of beam search. This can
be implemented by performing beam search decoding, then returning the highest
log-probability sequence that is accepted by the FSM. However, if the constraints
are only satisfied by relatively low probability output sequences, it is likely that an
infeasibly large beam would be required in order to produce sequences that satisfy
the constraints (and there is no guarantee of generating a satisfying sequence with a
given beam size).

An alternative approach has been investigated in the context of RNN poetry gen-
eration [Ghazvininejad et al., 2016]. Under this approach, all partial sequences gener-
ated by Equation 6.1 must satisfy the FSM during each step of beam search. We note that
similar ideas have been explored in the context of machine translation using n-gram
language models [Allauzen et al., 2014]. However, while this approach is effective for
ensuring that generated poems obey formal sonnet constraints, it cannot be applied
in our example as our FSM cannot be satisfied by sequences of arbitrary length—the
shortest satisfying sequence must contain at least two words. Instead, we propose a
multiple beam approach under which only complete sequences are required to satisfy
the FSM, and sequences that satisfy different constraint subsets do not compete with
each other for membership in a search beam. For example, in Figure 6.1 the con-
straint word ’suitcase’ is going to have an extremely low probability as it was never
seen in the caption training data, so partial captions containing ’suitcase’ will always
be much lower probability than partial captions that do not contain ’suitcase’. Our
approach maintains separate beams for captions containing ’suitcase’ and for cap-
tions not containing ’suitcase’, and allows captions to move between beams during
generation.

In detail, to generate constrained sequences we take as input an FSM that recog-
nises sequences satisfying the required constraints, and use the following multiple-
beam decoding algorithm. For each state s ∈ S in the FSM, a corresponding search
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Algorithm 1 Beam search decoding
1: procedure BS(Θ, b, T, Σ) . With beam size b and vocabulary Σ
2: B← {ε} . ε is the empty string
3: for t = 1, . . . , T do
4: E← {(y, w) | y ∈ B, w ∈ Σ} . All one-word extensions of sequences in B
5: B← argmaxE′⊂E,|E′|=b ∑y∈E′ Θ(y) . The b most probable extensions in E

6: return argmaxy∈B Θ(y) . The most probable sequence

Algorithm 2 Constrained beam search decoding
1: procedure CBS(Θ, b, T, (Σ, S, s0, δ, F)) . With finite state machine
2: for s ∈ S do
3: Bs ← {ε} if s = s0 else ∅ . Each state s has a beam Bs

4: for t = 1, . . . , T do
5: for s ∈ S do . Extend sequences through state-transition function δ
6: Es ← ∪s′∈S{(y, w) | y ∈ Bs′ , w ∈ Σ, δ(s′, w) = s}
7: Bs ← argmaxE′⊂Es,|E′|=b ∑y∈E′ Θ(y) . The b most probable extensions

in Es

8: return argmaxy∈⋃s∈F Bs Θ(y) . The most probable accepted sequence

beam Bs is maintained. As in beam search, each Bs is a set containing at most b
output sequences, where b is the beam size. At each time step t, a candidate set Es

t is
generated for each beam, as follows:

Es
t =

⋃
s′∈S

{
(yt−1, w) | yt−1 ∈ Bs′

t−1, w ∈ Σ, δ(s′, w) = s
}

(6.2)

where δ : S× Σ 7→ S is the FSM state-transition function that maps states and words
to states. In effect, each candidate set Es

t includes next word extensions from every
beam, provided the resulting sequence satisfies the corresponding state s. In other
words, the FSM state-transition function determines the appropriate candidate set
for each possible extension of a partial sequence. This ensures that sequences in ac-
cepting states must satisfy all constraints as they have been recognised by the FSM
during the decoding process. Similarly to beam search, each Bs

t is updated by retain-
ing the b most likely sequences in its candidate set Es

t . This ensures that only partial
sequences that satisfy the same constraints will compete with each other.

Initialisation is performed by inserting an empty sequence into the beam asso-
ciated with the start state s0, so B0

0 := {ε} and Bi 6=0
0 := ∅. The algorithm termi-

nates when an accepting state contains a completed sequence (e.g., containing an
end marker) with higher log probability than all incomplete sequences. In the exam-
ple contained in Figure 6.2, on termination captions in Beam 0 will not contain any
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Figure 6.2: Example of constrained beam search decoding. Each output sequence
must include the words ‘chair’ or ‘chairs’, and ‘desk’ or ‘table’ from vocabulary Σ. A
finite-state machine (FSM) that recognises valid sequences is illustrated at top. Each
state in the FSM corresponds to a beam in the search algorithm (bottom). FSM state
transitions determine the destination beam for each possible sequence extension.

Valid sequences are found in Beam 3, corresponding to FSM accepting state s3.
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words from D1 or D2, captions in Beam 1 will contain a word from D1 but not D2,
captions in Beam 2 will contain a word from D2 but not D1, and captions in Beam 3
will contain a word from both D1 and D2.

To summarise, in Algorithms 1 and 2 we provide an overview of the constrained
beam search algorithm, contrasting it directly with beam search. Both algorithms
take as inputs a scoring function which we define by Θ(y) = log pθ(y), a beam size
b, the maximum sequence length T and the model vocabulary Σ. However, the con-
strained beam search algorithm additionally takes an FSM as input, and guarantees
that the sequence returned will be accepted by the FSM.

Computational complexity Compared to beam search with the same beam size,
constrained beam search performs additional computation since it maintains multi-
ple beams during decode (one for each FSM state). Specifically, if γ is the compu-
tational cost of a single forward pass through an unrolled recurrent neural network
(e.g., the cost of decoding a single sequence), with beam size b the cost of beam
search decoding is given by b · γ. The cost of constrained beam search decoding is
given by |S| · b · γ, where |S| is the number of FSM states. Although the computa-
tional cost of training increases linearly with the number of FSM states, we note that
for any particular application FSM construction is a modelling choice and there are
many existing FSM compression and state reduction methods available.

6.3.3 Application to Image Captioning

In our experiments applying constrained beam search to image captioning, we im-
plement constraints to ensure that high-confidence text fragments—sourced from a
predictive model or ground-truth annotations—are mentioned in the resulting image
captions. Given single-word image tags (as in Section 6.4.2), to allow the captioning
model freedom to choose word forms we use WordNet [Miller, 1995] to map each
image tag to a disjunctive set Di = {wi,1, ..., wi,ni} containing the words in vocabulary
Σ that share the same lemma. Then, for each image we generate a FSM encoding the
conjunction of disjunctions C = {D1, ..., Dm} containing one disjunctive set for each
of m image tags. A sequence y satisfies constraint C iff for each Di ∈ C, there exists
a wi,j ∈ Di such that wi,j ∈ y. As illustrated with the example in Figure 6.2, which
contains two disjunctive sets—D1 and D2—and four states and beams, the algorithm
maintains one beam for each of the 2m subsets of disjunctive constraints Di. How-
ever, in practice m ≤ 4 is sufficient for the captioning task, and with these values our
GPU constrained beam search implementation based on Caffe [Jia et al., 2014] gen-
erates 40K captions for COCO in well under an hour. The use of WordNet lemmas
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adds minimal complexity to the algorithm, as the number of FSM states, and hence
the number of search beams, is not increased by adding words to a disjunctive set.
Given sequence-based constraints (as in Section 6.4.3), we do not use disjunctive sets.
In this case, the number of FSM states, and the number of search beams, is linear in
the length of the subsequence (the number of states is equal to number of words in a
phrase plus one).

Our approach to test-time novel object image captioning could be applied to any
existing CNN-RNN captioning model that can be decoded using beam search, e.g.,
[Donahue et al., 2015; Mao et al., 2015; Karpathy and Fei-Fei, 2015; Vinyals et al.,
2015; Devlin et al., 2015a]. However, for empirical evaluation we use the Long-term
Recurrent Convolutional Network [Donahue et al., 2015] (LRCN) as our base model.
The LRCN consists of a CNN visual feature extractor followed by two LSTM layers
[Hochreiter and Schmidhuber, 1997], each with 1K hidden units. The model is fac-
tored such that the bottom LSTM layer receives only language input, consisting of
the embedded previous word. At test time the previous word is the predicted model
output, but during training the ground-truth preceding word is used. The top LSTM
layer receives the output of the bottom LSTM layer, as well as a per-timestep static
copy of the CNN features extracted from the input image.

Given the LSTM operation ht = LSTM(xt, ht−1) described in Section 2.4, and
using superscripts to represent the LSTM layer index, the input vector for the bottom
LSTM is an encoding of the previous word, given by:

x1
t = WeΠt (6.3)

where We is a word embedding matrix, and Πt is a one-hot column vector identifying
the input word at timestep t. The top LSTM input vector comprises the concatenated
output of the bottom LSTM and the CNN feature descriptor of the image I, given by:

x2
t = (h1

t , CNNθ(I)) (6.4)

For the CNN component of the model, we evaluate using the 16-layer VGG [Si-
monyan and Zisserman, 2015] model and the 50-layer Residual Net [He et al., 2016a],
pretrained on ImageNet [Russakovsky et al., 2015] in both cases. Unlike Donahue
et al. [2015], we do not fix the CNN weights during initial training, as we find that
performance improves if all training is conducted end-to-end. In training, we use
only very basic data augmentation. All images are resized to 256 × 256 pixels and
the model is trained on random 224 × 224 crops and horizontal flips using stochastic
gradient descent (SGD) with hand-tuned learning rates.
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6.3.4 Vocabulary Expansion

When captioning images containing objects previously unseen by the captioning
model, the text fragments used as constraints may contain words that are not actually
present in the captioning model’s vocabulary. To tackle this issue, we leverage pre-
trained word embeddings, specifically the 300 dimension GloVe [Pennington et al.,
2014] embeddings trained on 42B tokens of external text corpora. These embeddings
are introduced at both the word input and word output layers of the captioning
model and fixed throughout training. Concretely, the ith column of the We input em-
bedding matrix is initialised with the GloVe vector associated with vocabulary word
i. This entails reducing the dimension of the original LRCN input embedding from
1K to 300. The model output is then:

vt = tanh (Wvh2
t + bv) (6.5)

p(yt | yt−1, ..., y1, I) = softmax (WT
e vt) (6.6)

where vt represents the top LSTM output projected to 300 dimensions, WT
e contains

GloVe embeddings as row vectors, and p(yt | yt−1, ..., y1, I) represents the normalised
probability distribution over the predicted output word yt at timestep t, given the
previous output words and the image. The model is trained with the conventional
softmax cross-entropy loss function, and learns to predict vt vectors that have a high
dot-product similarity with the GloVe embedding of the correct output word.

Given these modifications—which could be applied to other similar captioning
models—the process of expanding the model’s vocabulary at test time is straight-
forward. To introduce an additional vocabulary word, the GloVe embedding for the
new word is simply concatenated with We as an additional column, increasing the
dimension of both Πt and pt by one. In total there are 1.9M words in our selected
GloVe embedding, which for practical purposes represents an open vocabulary. Since
GloVe embeddings capture semantic and syntactic similarities [Pennington et al.,
2014], intuitively the captioning model will generalise from similar words in order to
understand how the new word can be used.

6.4 Experiments

To evaluate our approach, we conduct two experiments. In the first experiment we
use a held-out version of the COCO dataset. Leveraging image tag predictions from
an existing model [Hendricks et al., 2016] as constraints, we demonstrate state of the
art performance for out-of-domain image captioning, while simultaneously improv-
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ing the performance of the base model on in-domain data. Perhaps surprisingly, our
results significantly outperform approaches that incorporate the same tag predic-
tions into the learning algorithm [Hendricks et al., 2016; Venugopalan et al., 2017]. In
the second experiment we attempt the extremely challenging task of using a model
trained on COCO to caption the ImageNet classification dataset [Russakovsky et al.,
2015] (which contains hundreds of unseen object classes). Human evaluations indi-
cate that by leveraging ground truth image labels as constraints, the proportion of
captions meeting or exceeding human quality doubles.

6.4.1 Dataset Pre-processing

Refer to Section 3.2 for a detailed overview of the COCO captions dataset [Lin et al.,
2014b]. In our experiments in this chapter we follow standard practice and perform
only minimal text pre-processing, converting all sentences to lower case and tokeniz-
ing on white space. It is common practice to filter vocabulary words that occur less
than five times in the training set. However, since our model does not learn word
embeddings, vocabulary filtering is not necessary. Avoiding filtering increases our
vocabulary from around 8,800 words to 21,689, allowing the model to potentially ex-
tract a useful training signal even from rare words and spelling mistakes (which are
generally close to the correctly spelled word in embedding space). In all experiments
we use a beam size of 5, and we also enforce the constraint that a single word cannot
be predicted twice in a row.

6.4.2 Out-of-Domain Image Captioning

To evaluate the ability of our approach to perform novel object image captioning,
we replicate an existing experimental design [Hendricks et al., 2016] using COCO.
Following this approach, all images with captions that mention one of eight selected
objects (or their synonyms) are excluded from the image caption training set. This
reduces the size of the caption training set from 82,783 images to 70,194 images.
However, the complete caption training set is tokenized as a bag of words per im-
age, and made available as image tag training data. As such, the selected objects are
unseen in the image caption training data, but not the image tag training data. The
excluded objects, selected by Hendricks et al. [2016] from the 80 main object cate-
gories in COCO, are: ‘bottle’, ‘bus’, ‘couch’, ‘microwave’, ‘pizza’, ‘racket’, ‘suitcase’
and ‘zebra’.

For validation and testing on this task, we use the same splits as in prior work
[Hendricks et al., 2016; Venugopalan et al., 2017], with half of the original COCO
validation set used for validation, and half for testing. We use the validation set to
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Base: A woman is play-
ing tennis on a tennis court.
Tags: tennis, player, ball,
racket. Base+T4: A tennis
player swinging a racket at a
ball.

Base: A man standing next
to a yellow train. Tags:
bus, yellow, next, street.
Base+T4: A man standing
next to a yellow bus on the
street.

Base: A close up of a cow
on a dirt ground. Tags:
zebra, zoo, enclosure, stand-
ing. Base+T4: A zebra
standing in front of a zoo en-
closure.

Base: A dog is sitting in front of a tv. Tags:
dog, head, television, cat. Base+T4: A dog
with a cat on its head watching television.

Base: A group of people playing a game
of tennis. Tags: pink, tennis, crowd,
ball. Base+T4: A crowd of people standing
around a pink tennis ball.

Figure 6.3: Examples of captions generated on the COCO dataset using the base
model (Base), and the base model constrained to include four predicted image tags
(Base+T4). Words never seen in training captions are underlined. The bottom row

contains some failure cases.

determine hyperparameters and for early-stopping, and report all results on the test
set. For evaluation the test set is split into in-domain and out-of-domain subsets,
with the out-of-domain designation given to any test image that contains a mention
of an excluded object in at least one reference caption.

To evaluate generated caption quality, we use the SPICE metric (refer Chapter 4
and [Anderson et al., 2016]), which has been shown to correlate well with human
judgement on the COCO dataset, as well as the METEOR [Denkowski and Lavie,



§6.4 Experiments 89

Out-of-Domain Test Data In-Domain Test Data

Model CNN SPICE METEOR CIDEr F1 SPICE METEOR CIDEr

DCC VGG-16 13.4 21.0 59.1 39.8 15.9 23.0 77.2
NOC VGG-16 - 21.4 - 49.1 - - -
Base VGG-16 12.4 20.4 57.7 0 17.6 24.9 93.0
Base+T1 VGG-16 13.6 21.7 68.9 27.2 17.9 25.0 93.4
Base+T2 VGG-16 14.8 22.6 75.4 38.7 18.2 25.0 92.8
Base+T3 VGG-16 15.5 23.0 77.5 48.4 18.2 24.8 90.4
Base+T4 VGG-16 15.9 23.3 77.9 54.0 18.0 24.5 86.3

Base+T3* VGG-16 18.7 27.1 119.6 54.5 22.0 29.4 135.5
Base All VGG-16 17.8 25.2 93.8 59.4 17.4 24.5 91.7

Base ResNet-50 12.6 20.5 56.8 0 18.2 24.9 93.2
Base+T1 ResNet-50 14.2 21.7 68.1 27.3 18.5 25.2 94.6
Base+T2 ResNet-50 15.3 22.7 74.7 38.5 18.7 25.3 94.1
Base+T3 ResNet-50 16.0 23.3 77.8 48.2 18.7 25.2 92.3
Base+T4 ResNet-50 16.4 23.6 77.6 53.3 18.4 24.9 88.0

Base+T3* ResNet-50 19.2 27.3 117.9 54.5 22.3 29.4 133.7
Base All ResNet-50 18.6 26.0 96.9 60.0 18.0 25.0 93.8

Table 6.1: Evaluation of captions generated using constrained beam search with 1–4
predicted image tags used as constraints (Base+T1–4). Our approach significantly
outperforms both the DCC [Hendricks et al., 2016] and NOC [Venugopalan et al.,
2017] models, despite reusing the image tag predictions of the DCC model. Impor-

tantly, performance on in-domain data is not degraded but can also improve.

2014] and CIDEr [Vedantam et al., 2015] metrics. For consistency with previously
reported results, scores on out-of-domain test data are macro-averaged across the
eight excluded object classes. To improve the comparability of CIDEr scores, the
inverse document frequency statistics used by this metric are determined across the
entire test set, rather than within subsets. On out-of-domain test data, we also report
the F1 metric for mentions of excluded objects. To calculate the F1 metric, the model
is considered to have predicted condition positive if the generated caption contains
at least one mention of the excluded object, and negative otherwise. The ground
truth is considered to be positive for an image if the excluded object in question is
mentioned in any of the reference captions, and negative otherwise.

As illustrated in Table 6.1, on the out-of-domain test data, our base model trained
only with image captions (Base) receives an F1 score of 0, as it is incapable of men-
tioned objects that do not appear in the training captions. In terms of SPICE, ME-
TEOR and CIDEr scores, our base model performs slightly worse than the DCC
model on out-of-domain data, but significantly better on in-domain data. This may
suggest that the DCC model achieves improvements in out-of-domain performance
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Model bottle bus couch microwave pizza racket suitcase zebra Avg

DCC 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8
NOC 17.8 68.8 25.6 24.7 69.3 68.1 39.9 89.0 49.1
Base+T4 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54.0

Table 6.2: F1 scores for mentions of objects not seen during caption training. Our
approach (Base+T4) reuses the top 4 image tag predictions from the DCC [Hendricks
et al., 2016] model but generates higher F1 scores by interpreting tag predictions as

constraints. All results based on use of the VGG-16 CNN.

at the expense of in-domain scores (in-domain scores for the NOC model were not
available at the time of submission).

Results marked with ‘+’ in Table 6.1 indicate that our base model has been de-
coded with constraints in the form of predicted image tags. However, for the fairest
comparison, and because re-using existing image taggers at test time is one of the
motivations for this work, we did not train an image tagger from scratch. Instead,
in results T1–4 we use the top 1–4 tag predictions respectively from the VGG-16
CNN-based image tagger used in the DCC model. This model was trained by Hen-
dricks et al. [2016] to predict 471 COCO visual concepts including adjectives, verbs
and nouns. Examples of generated captions, including failure cases, are presented in
Figure 6.3.

As indicated in Table 6.1, using similar model capacity, the constrained beam
search approach with predicted tags significantly outperforms prior work in terms
SPICE, METEOR and CIDEr scores, across both out-of-domain and in-domain test
data, utilising varying numbers of tag predictions. Overall these results suggest
that, perhaps surprisingly, it may be better to incorporate image tags into captioning
models during decoding rather than during training. It also appears that, while
introducing image tags improves performance on both out-of-domain and in-domain
evaluations, it is beneficial to introduce more tag constraints when the test data is
likely to contain previously unseen objects. This reflects the trading-off of influence
between the image tags and the captioning model. For example, we noted that when
using two tag constraints, 36% of generated captions were identical to the base model,
but when using four tags this proportion dropped to only 3%.

To establish performance upper bounds, we train the base model on the com-
plete COCO training set (Base All). We also evaluate captions generated using our
approach combined with an ‘oracle’ image tagger consisting of the top 3 ground-
truth image tags (T3*). These were determined by selecting the 3 most frequently
mentioned words in the reference captions for each test image (after eliminating stop
words). The very high scores recorded for this approach may motivate the use of



§6.4 Experiments 91

Better Equally Good Equally Poor Worse

Base v. Human 0.05 0.06 0.04 0.86
Base+Syn v. Human 0.12 0.10 0.05 0.73
Base+Syn v. Base 0.39 0.06 0.42 0.13

Table 6.3: Human evaluations comparing ImageNet captions. Our approach leverag-
ing ground-truth synset labels (Base+Syn) improves significantly over the base model
(Base) in both direct comparison and in comparison to human-generated captions.

more powerful image taggers in future work. Finally, replacing VGG-16 with the
more powerful ResNet-50 [He et al., 2016a] CNN leads to modest improvements as
indicated in the lower half of Table 6.1.

Evaluating F1 scores for object mentions (see Table 6.2), we note that while our
approach outperforms prior work when four image tags are used, a significant in-
crease in this score should not be expected as the underlying image tagger is the
same.

6.4.3 Captioning ImageNet

Consistent with our observation that many image collections contain useful annota-
tions, and that we should seek to use this information, in this section we caption a 5K
image subset of the ImageNet [Russakovsky et al., 2015] ILSVRC 2012 classification
dataset for assessment. The dataset contains 1.2M images classified into 1K object
categories, from which we randomly select five images from each category.

For this task we use the ResNet-50 [He et al., 2016a] CNN, and train the base
model on a combined training set containing 155k images comprised of the COCO
[Chen et al., 2015] training and validation datasets, and the full Flickr 30k [Young
et al., 2014] captions dataset. We use constrained beam search and vocabulary ex-
pansion to ensure that each generated caption includes a phrase from the WordNet
[Fellbaum, 1998] synset representing the ground-truth image category. For synsets
that contain multiple entries, we run constrained beam search separately for each
phrase and select the predicted caption with the highest log probability overall.

Note that even with the use of ground-truth object labels, the ImageNet cap-
tioning task remains extremely challenging as ImageNet contains a wide variety of
classes, many of which are not represented in the available image-caption training
datasets. Nevertheless, the injection of the ground-truth label frequently improves
the overall structure of the caption over the base model in multiple ways. Examples
of generated captions, including failure cases, are presented in Figure 6.4.

As the ImageNet dataset contains no existing caption annotations, following the
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Base: A close up of a pizza on the
ground. Synset: rock crab. Base+Synset:
A large rock crab sitting on top of a rock.

Base: A close up shot of an orange.
Synset: pool table, billiard table, snooker
table. Base+Synset: A close up of an or-
ange ball on a billiard table.

Base: A herd or horses standing on
a lush green field. Synset: rapeseed.
Base+Synset: A group of horses grazing
in a field of rapeseed.

Base: A black bird is standing in
the grass. Synset: oystercatcher, oys-
ter catcher. Base+Synset: A black
oystercatcher with a red beak standing in
the grass.

Base: A man and a woman standing next
to each other. Synset: colobus, colobus
monkey. Base+Synset: Two colobus
standing next to each other near a fence.

Base: A bird standing on top of a
grass covered field. Synset: cricket.
Base+Synset: A bird standing on top of
a cricket field.

Figure 6.4: Examples of ImageNet captions generated by the base model (Base), and
by the base model constrained to include the ground-truth synset (Base+Synset).
Words never seen in the COCO / Flickr 30k caption training set are underlined. The

bottom row contains some failure cases.
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Figure 6.5: Human evaluations of generated (Base+Syn) ImageNet captions versus
human captions, by super-category.

human-evaluation protocol established for the COCO 2015 Captioning Challenge
[Chen et al., 2015], we used Amazon Mechanical Turk (AMT) to collect a human-
generated caption for each sample image. For each of the 5K samples images,
three human evaluators were then asked to compare the caption generated using
our approach with the human-generated caption (Base+Syn v. Human). Using
a smaller sample of 1K images, we also collected evaluations comparing our ap-
proach to the base model (Base+Syn v. Base), and comparing the base model with
human-generated captions (Base v. Human). We used only US-based AMT workers,
screened according to their performance on previous tasks. For both tasks, the user
interface and question phrasing was identical to the COCO collection process. The
results of these evaluations are summarised in Table 6.3.

Overall, Base+Syn captions were judged to be equally good or better than human-
generated captions in 22% of pairwise evaluations (12% ‘better’, 10% ‘equally good’),
and equally poor or worse than human-generated captions in the remaining 78% of
evaluations. Although still a long way from human performance, this is a significant
improvement over the base model with only 11% of captions judged to be equally
good or better than human. For context, using the identical evaluation protocol,
the top scoring model in the COCO Captioning Challenge (evaluating on in-domain
data) received 11% ‘better’, and 17% ‘equally good’ evaluations.

To better understand performance across synsets, in Figure 6.5 we cluster some
class labels into super-categories using the WordNet hierarchy, noting particularly
strong performances in super-categories that have some representation in the caption
training data — such as birds, mammals and dogs. These promising results suggest
that fine-grained object labels can be successfully integrated with a general purpose
captioning model using our approach.
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6.5 Chapter Summary

To approach human performance on vision and language tasks, we must grapple
with a very long tail of rare visual concepts. Motivated by this problem, in this
chapter we introduce constrained beam search, a novel approximate search algorithm
capable of enforcing any constraints over generated output sequences that can be
expressed in a finite-state machine. Applying this approach to out-of-domain image
captioning, we demonstrate that the outputs of an image tagger and an image cap-
tioning model can be successfully combined at test time, allowing an image caption-
ing model to scale to many more visual concepts. Our approach achieves state of the
art results on a held-out COCO dataset. Furthermore, we show that we can signifi-
cantly improve the quality of generated ImageNet captions by using the ground-truth
labels. Perhaps surprisingly, our approach—which does not rely on any joint training
of the image tagger and the captioning model—outperformed existing methods that
incorporate tag predictions into the learning algorithm. Given this result we view
the incorporation of constrained beam search into the learning algorithm—perhaps
using an expectation-maximisation (EM) style algorithm—as an exciting direction for
future research.



Chapter 7

Vision and Language Navigation in
Real Environments

In Chapters 4–6 we focused on the challenges of image captioning [Chen et al., 2015]
and visual question answering (VQA) [Goyal et al., 2017], addressing evaluation,
attention modelling, and generalisation to more diverse input images, respectively.
These tasks are ideal for encouraging and quantifying progress in vision and lan-
guage understanding. However, these and other datasets based on static images
have a serious limitation as they do not allow the model (agent) to move or control
the camera, or take any other actions in the environment. This neglects a crucial
aspect of many problems, namely, the embodiment of the agent. In this chapter, we
address this limitation by proposing a new task and dataset to enable and encour-
age the application of vision and language methods to problems involving embodied
agents.

7.1 Vision and Language Navigation

The idea that we might be able to give general, verbal instructions to a robot and
have at least a reasonable probability that it will carry out the required task is one
of the long-held goals of robotics, and artificial intelligence (AI). Despite significant
progress, there are a number of major technical challenges that need to be overcome
before robots will be able to perform general tasks in the real world. One of the
primary requirements will be new techniques for linking natural language to vision
and action in unstructured, previously unseen environments. It is the navigation version
of this challenge that we refer to as Vision and Language Navigation (VLN).

Although interpreting natural-language navigation instructions has received sig-
nificant attention previously [Chaplot et al., 2018; Chen and Mooney, 2011; Guadar-
rama et al., 2013; Mei et al., 2016; Misra et al., 2017; Tellex et al., 2011], it is the
recent success of recurrent neural network methods for the joint interpretation of
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images and natural language that motivates the VLN task, and the associated Room-
to-Room (R2R) dataset described below. The dataset particularly has been designed
to simplify the application of vision and language methods to what might otherwise
seem a distant problem.

Previous approaches to natural language command of robots have often neglected
the visual information processing aspect of the problem. Using rendered, rather than
real images [Beattie et al., 2016; Kempka et al., 2016; Zhu et al., 2017], for example,
constrains the set of visible objects to the set of hand-crafted models available to
the renderer. This turns the robot’s challenging open-set problem of relating real
language to real imagery into a far simpler closed-set classification problem. The
natural extension of this process is that adopted in works where the images are re-
placed by a set of labels [Chen and Mooney, 2011; Tellex et al., 2011]. Limiting the
variation in the imagery inevitably limits the variation in the navigation instructions
also. What distinguishes the VLN challenge is that the agent is required to interpret
a previously unseen natural-language navigation command in light of images gener-
ated by a previously unseen real environment. The task thus more closely models the
distinctly open-set nature of the underlying problem.

To enable the reproducible evaluation of VLN methods, we present the Matter-
port3D Simulator. The simulator is a large-scale interactive reinforcement learning
(RL) environment constructed from the Matterport3D dataset [Chang et al., 2017]
which contains 10,800 densely-sampled panoramic RGB-D images of 90 real-world
building-scale indoor environments. Compared to synthetic RL environments [Beat-
tie et al., 2016; Kempka et al., 2016; Zhu et al., 2017], the use of real-world image data
preserves visual and linguistic richness, maximising the potential for trained agents
to be transferred to real-world applications.

Based on the Matterport3D environments, we collect the Room-to-Room (R2R)
dataset containing 21,567 open-vocabulary, crowd-sourced navigation instructions
with an average length of 29 words. Each instruction describes a trajectory traversing
typically multiple rooms. As illustrated in Figure 7.1, the associated task requires
an agent to follow natural-language instructions to navigate to a goal location in a
previously unseen building. We investigate the difficulty of this task, and particularly
the difficulty of operating in unseen environments, using several baselines and a
sequence-to-sequence model based on methods successfully applied to other vision
and language tasks [Antol et al., 2015; Chen et al., 2015; Goyal et al., 2017].
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Instruction: Head upstairs and walk past the piano through an
archway directly in front. Turn right when the hallway ends at
the pictures and table. Wait by the moose antlers hanging on the
wall.

Figure 7.1: The Room-to-Room (R2R) navigation task. We focus on executing natu-
ral language navigation instructions in previously unseen real-world buildings. The
agent’s camera can be rotated freely. Blue discs indicate nearby (discretized) naviga-

tion options.

7.2 Related Work

Navigation and language Natural language command of robots in unstructured
environments has been a research goal for several decades [Winograd, 1971]. How-
ever, many existing approaches abstract away the problem of visual perception to
some degree. This is typically achieved either by assuming that the set of all navi-
gation goals, or objects to be acted upon, has been enumerated, and that each will
be identified by label [Chen and Mooney, 2011; Tellex et al., 2011], or by operating
in visually restricted environments requiring limited perception [Chaplot et al., 2018;
Guadarrama et al., 2013; Huang et al., 2010; Kollar et al., 2010; MacMahon et al., 2006;
Mei et al., 2016; Vogel and Jurafsky, 2010]. Our work contributes for the first time
a navigation benchmark dataset that is both linguistically and visually rich, moving
closer to real scenarios while still enabling reproducible evaluations.

Vision and language The development of new benchmark datasets for image cap-
tioning [Chen et al., 2015], visual question answering (VQA) [Antol et al., 2015; Goyal
et al., 2017] and visual dialog [Das et al., 2017] has spurred considerable progress in
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Figure 7.2: Differences between Vision and Language Navigation (VLN) and Vi-
sual Question Answering (VQA). Both tasks can be formulated as visually grounded
sequence-to-sequence transcoding problems. However, VLN sequences are much
longer and, uniquely among vision and language benchmark tasks using real im-
ages, the model outputs actions (a0, a1, . . . aT) that manipulate the camera viewpoint.

vision and language understanding, enabling models to be trained end-to-end on
raw pixel data from large datasets of natural images. However, although many tasks
combining visual and linguistic reasoning have been motivated by their potential
robotic applications [Antol et al., 2015; Das et al., 2017; Kazemzadeh et al., 2014; Mao
et al., 2016; Tapaswi et al., 2016], none of these tasks allow an agent to move or con-
trol the camera. As illustrated in Figure 7.2, our proposed R2R benchmark addresses
this limitation, which also motivates several concurrent works on embodied question
answering [Das et al., 2018; Gordon et al., 2018].

Navigation based simulators Our simulator is related to existing 3D RL environ-
ments based on game engines, such as ViZDoom [Kempka et al., 2016], DeepMind
Lab [Beattie et al., 2016] and AI2-THOR [Kolve et al., 2017], as well as a number of
newer environments developed concurrently including HoME [Brodeur et al., 2017],
House3D [Wu et al., 2018], MINOS [Savva et al., 2017], CHALET [Yan et al., 2018]
and Gibson Env [Zamir et al., 2018b]. The main advantage of our framework over
synthetic environments [Kolve et al., 2017; Brodeur et al., 2017; Wu et al., 2018; Yan
et al., 2018] is that all pixel observations come from natural images of real scenes,
ensuring that almost every coffee mug, pot-plant and wallpaper texture is unique.
This visual diversity and richness is hard to replicate using a limited set of 3D as-
sets and textures. Compared to MINOS [Savva et al., 2017], which is also based
on Matterport data [Chang et al., 2017], we render from panoramic images rather
than textured meshes. Since the meshes have missing geometry—particularly for
windows and mirrors—our approach improves visual realism but limits navigation
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to discrete locations (refer Section 7.3.2 for details). Our approach is similar to the
(much smaller) Active Vision Dataset [Ammirato et al., 2017].

RL in navigation A number of recent papers use reinforcement learning (RL) to
train navigational agents [Kulkarni et al., 2016; Tai and Liu, 2016; Tessler et al., 2017;
Zhu et al., 2017; Gupta et al., 2017], although these works do not address language in-
struction. The use of RL for language-based navigation has been studied in Chaplot
et al. [2018] and Misra et al. [2017], however, the settings are visually and linguisti-
cally less complex. For example, Chaplot et al. [2018] develop an RL model to execute
template-based instructions in Doom environments [Kempka et al., 2016]. Misra et al.
[2017] study complex language instructions in a fully-observable blocks world. By
releasing our simulator and dataset, we hope to encourage further research in more
realistic partially-observable settings.

7.3 Matterport3D Simulator

In this section we introduce the Matterport3D Simulator, a new large-scale visual re-
inforcement learning (RL) simulation environment for the research and development
of intelligent agents based on the Matterport3D dataset [Chang et al., 2017]. The
Room-to-Room (R2R) navigation dataset is discussed in Section 7.4.

7.3.1 Matterport3D Dataset

Most RGB-D datasets are derived from video sequences; e.g. NYUv2 [Nathan Sil-
berman and Fergus, 2012], SUN RGB-D [Song et al., 2015] and ScanNet [Dai et al.,
2017a]. These datasets typically offer only one or two paths through a scene, making
them inadequate for simulating robot motion. In contrast to these datasets, the re-
cently released Matterport3D dataset [Chang et al., 2017] contains a comprehensive
set of panoramic views. To the best of our knowledge it is also the largest currently
available RGB-D research dataset.

In detail, the Matterport3D dataset consists of 10,800 panoramic views constructed
from 194,400 RGB-D images of 90 building-scale scenes. On average, panoramic
viewpoints are distributed throughout the entire walkable floor plan of each scene
at an average separation of 2.25m. Each panoramic view is comprised of 18 RGB-D
images captured from a single 3D position at the approximate height of a standing
person. Each image is annotated with an accurate 6 DoF camera pose, and collec-
tively the images capture the entire sphere except the poles. The dataset also includes
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Figure 7.3: A snapshot of the visual diversity in the Matterport3D dataset [Chang
et al., 2017], illustrating one randomly selected panoramic viewpoint per scene.
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globally-aligned, textured 3D meshes annotated with class and instance segmenta-
tions of regions (rooms) and objects.

In terms of visual diversity, as illustrated in Figure 7.3, the selected Matterport
scenes encompass a range of buildings including houses, apartments, hotels, offices
and churches of varying size and complexity. These buildings contain enormous
visual diversity, posing real challenges to computer vision. Many of the scenes in the
dataset can be viewed in the Matterport 3D spaces gallery1.

7.3.2 Simulator

7.3.2.1 Observations

To construct the simulator, we allow an embodied agent to virtually ‘move’ through-
out a scene by adopting poses coinciding with panoramic viewpoints. Agent poses
are defined in terms of 3D position v ∈ V, heading ψ ∈ [0, 2π), and camera elevation
θ ∈ [−π

2 , π
2 ], where V is the set of 3D points associated with panoramic viewpoints

in the scene. At each step t, the simulator outputs an RGB image observation ot cor-
responding to the agent’s first person camera view. Images are generated from per-
spective projections of precomputed cube-mapped images at each viewpoint. Future
extensions to the simulator will also support depth image observations (RGB-D), and
additional instrumentation in the form of rendered object class and object instance
segmentations (based on the underlying Matterport3D mesh annotations).

7.3.2.2 Action Space

The main challenge in implementing the simulator is determining the state-dependent
action space. Naturally, we wish to prevent agents from teleporting through walls
and floors, or traversing other non-navigable regions of space. Therefore, at each
step t the simulator also outputs a set of next step reachable viewpoints Wt+1 ⊆ V.
Agents interact with the simulator by selecting a new viewpoint vt+1 ∈ Wt+1, and
nominating camera heading (∆ψt+1) and elevation (∆θt+1) adjustments. Actions are
deterministic.

To determine Wt+1, for each scene the simulator includes a weighted, undirected
graph over panoramic viewpoints, G = (V, E), such that the presence of an edge
signifies a robot-navigable transition between two viewpoints, and the weight of that
edge reflects the straight-line distance between them. To construct the graphs, we ray-
traced between viewpoints in the Matterport3D scene meshes to detect intervening
obstacles. To ensure that motion remains localised, we then removed edges longer

1https://matterport.com/gallery/
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Figure 7.4: An example navigation graph for a partial floor of one building-scale
scene in the Matterport3D Simulator. Navigable paths between panoramic view-

points are illustrated in blue. Stairs can also be navigated to move between floors.

than 5m. Finally, we manually verified each navigation graph to correct for missing
obstacles not captured in the meshes (such as windows and mirrors).

Given navigation graph G, the set of next-step reachable viewpoints is given by:

Wt+1 =
{

vt
}
∪
{

vi ∈ V | (vt, vi) ∈ E ∧ vi ∈ Pt
}

(7.1)

where vt is the current viewpoint, and Pt is the region of space enclosed by the
left and right extents of the camera view frustum at step t. In effect, the agent is
permitted to follow any edges in the navigation graph, provided that the destination
is within the current field of view, or visible by glancing up or down2. Alternatively,
the agent always has the choice to remain at the same viewpoint and simply move
the camera.

Figure 7.4 illustrates a partial example of a typical navigation graph. On average
each graph contains 117 viewpoints, with an average vertex degree of 4.1. This
compares favourably with grid-world navigation graphs which, due to walls and
obstacles, must have an average degree of less than 4. As such, although agent
motion is discretised, this does not constitute a significant limitation in the context
of most high-level tasks. Even with a real robot it may not be practical or necessary

2This avoids forcing the agent to look at the floor every time it takes a small step.
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to continuously re-plan higher-level objectives with every new RGB-D camera view.
Indeed, even agents operating in 3D simulators that notionally support continuous
motion typically use discretised action spaces in practice [Zhu et al., 2017; Das et al.,
2018; Gordon et al., 2018; Savva et al., 2017].

The simulator does not define or place restrictions on the agent’s goal, reward
function, or any additional context (such as natural language navigation instruc-
tions). These aspects of the RL environment are task and dataset dependent, for
example as described in Section 7.4.

7.3.2.3 Implementation Details

The Matterport3D Simulator is written in C++ using OpenGL. In addition to the
C++ API, Python bindings are also provided, allowing the simulator to be easily
used with deep learning frameworks such as Caffe [Jia et al., 2014] and TensorFlow
[Abadi et al., 2016], or within RL platforms such as ParlAI [Miller et al., 2017] and
OpenAI Gym [Brockman et al., 2016]. Various configuration options are offered for
parameters such as image resolution and field of view. Separate to the simulator, we
have also developed a WebGL browser-based visualisation library for collecting text
annotations of navigation trajectories using Amazon Mechanical Turk, which we will
make available to other researchers.

7.3.2.4 Biases

We are reluctant to introduce a new dataset (or simulator, in this case) without at least
some attempt to address its limitations and biases [Torralba and Efros, 2011]. In the
Matterport3D dataset we have observed several selection biases. First, the majority of
captured living spaces are scrupulously clean and tidy, and often luxurious. Second,
the dataset contains very few people and animals, which are a mainstay of many
other vision and language datasets [Chen et al., 2015; Antol et al., 2015]. Finally, we
observe some capture bias as selected viewpoints generally offer commanding views
of the environment (and are therefore not necessarily in the positions in which a
robot might find itself). Alleviating these limitations to some extent, the simulator
can be extended by collecting additional building scans. Refer to Stanford 2D-3D-S
[Armeni et al., 2017] for a recent example of an academic dataset collected with a
Matterport camera.
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7.4 Room-to-Room (R2R) Navigation

We now describe the Room-to-Room (R2R) task and dataset, including an outline of
the data collection process and analysis of the navigation instructions gathered.

7.4.1 Task

As illustrated in Figure 7.1, the R2R task requires an embodied agent to follow nat-
ural language instructions to navigate from a starting pose to a goal location in the
Matterport3D Simulator. Formally, at the beginning of each episode the agent is
given as input a natural language instruction x̄ = (x1, x2, . . . xL), where L is the
length of the instruction and xi is a single word token. The agent observes an
initial RGB image o0, determined by the agent’s initial pose comprising a tuple of
3D position, heading and elevation s0 = (v0, ψ0, θ0). The agent must execute a se-
quence of actions (s0, a0, s1, a1, . . . , sT, aT), with each action at leading to a new pose
st+1 = (vt+1, ψt+1, θt+1), and generating a new image observation ot+1. The episode
ends when the agent selects the special stop action, which is augmented to the sim-
ulator action space defined in Section 7.3.2.2. The task is successfully completed if
the action sequence delivers the agent close to an intended goal location v∗ (refer to
Section 7.4.4 for evaluation details).

7.4.2 Data Collection

To generate navigation data, we use the Matterport3D region annotations to sample
start pose s0 and goal location v∗ pairs that are (predominantly) in different rooms.
For each pair, we find the shortest path v0 : v∗ in the relevant weighted, undirected
navigation graph G, discarding paths that are shorter than 5m, and paths that contain
less than four or more than six edges. In total we sample 7,189 paths capturing most
of the visual diversity in the dataset. The average path length is 10m, as illustrated
in Figure 7.6.

For each path, we collect three associated navigation instructions using Amazon
Mechanical Turk (AMT). To this end, we provide workers with an interactive 3D
WebGL environment depicting the path from the start location to the goal location
using coloured markers. Workers can interact with the trajectory as a ‘fly-through’,
or pan and tilt the camera at any viewpoint along the path for additional context. We
then ask workers to ‘write directions so that a smart robot can find the goal location
after starting from the same start location’. Workers are further instructed that it is
not necessary to follow exactly the path indicated, merely to reach the goal. A video
demonstration is also provided.
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Standing in front of the family picture, 
turn left and walk straight through the 
bathroom past the tub and mirrors. Go 
through the doorway and stop when the 
door to the bathroom is on your right 
and the door to the closet is to your left.

Walk with the family photo on your 
right. Continue straight into the 
bathroom. Walk past the bathtub. Stop 
in the hall between the bathroom and 
toilet doorways.

Walk straight passed bathtub and stop 
with closet on the left and toilet on the 
right.

Pass the pool and go indoors using the 
double glass doors. Pass the large table 
with chairs and turn left and wait by the 
wine bottles that have grapes by them.

Walk straight through the room and exit 
out the door on the left. Keep going past 
the large table and turn left. Walk down 
the hallway and stop when you reach the 
2 entry ways. One in front of you and one 
to your right. The bar area is to your left.

Enter house through double doors, 
continue straight across dining room, turn 
left into bar and stop on the circle on the 
ground.

  

Exit the office then turn left and then 
turn left in the hallway and head down 
the hallway until you get to a door on 
your left and go into office 359 then 
stop.

Go out of the room and take a left. Go 
into the first room on your left.

Leave the office and take a left. Take 
the next left at the hallway. Walk down 
the hall and enter the first office on the 
left. Stop next to the door to office 359.

Go up the stairs and turn right. Go past 
the bathroom and stop next to the bed.

Walk all the way up the stairs, and 
immediately turn right. Pass the 
bathroom on the left, and enter the 
bedroom that is right there, and stop 
there.

Walk up the stairs turn right at the top 
and walk through the doorway continue 
straight and stop inside the bedroom.

Figure 7.5: Randomly selected examples of R2R navigation instructions (three per
trajectory) showing the view from the starting pose.
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Figure 7.6: Distribution of instruction length and navigation trajectory length in the
R2R dataset.

The full collection interface (illustrated in Figure 7.7) was the result of several
rounds of experimentation. We used only US-based AMT workers, screened accord-
ing to their performance on previous tasks. Over 400 workers participated in the
data collection, contributing around 1,600 hours of annotation time.

7.4.3 R2R Dataset Analysis

In total, we collected 21,567 navigation instructions with an average length of 29
words. This is considerably longer than visual question answering datasets where
most questions range from four to ten words [Antol et al., 2015]. However, given
the focused nature of the task, the instruction vocabulary is relatively constrained,
consisting of around 3.1k words (approximately 1.2k with five or more mentions). As
illustrated by the examples included in Figure 7.5, the level of abstraction in instruc-
tions varies widely. This likely reflects differences in people’s mental models of the
way a ‘smart robot’ works [Norman, 2002], making the handling of these differences
an important aspect of the task. The distribution of navigation instructions based
on their first words is depicted in Figure 7.8. Although we use the R2R dataset in
conjunction with the Matterport3D Simulator, we see no technical reason why this
dataset couldn’t also be used with other simulators based on the Matterport dataset
[Chang et al., 2017].

7.4.4 Evaluation Protocol

One of the strengths of the R2R task is that, in contrast to many other vision and
language tasks such as image captioning, success is clearly measurable. We define
navigation error as the shortest path distance in the navigation graph G between the
agent’s final position vT (i.e., disregarding heading and elevation) and the goal lo-
cation v∗. We consider an episode to be a success if the navigation error is less than
3m. This threshold allows for a margin of error of approximately one viewpoint, yet
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Figure 7.7: AMT data collection interface for the R2R navigation dataset. Here, blue
markers can be seen indicating the trajectory to the goal location. However, in many
cases the worker must first look around (pan and tilt) to find the markers. Clicking on
a marker moves the camera to that location. Workers can also watch a ‘fly-through’

of the complete trajectory by clicking the Play / Replay button.
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Figure 7.8: Distribution of navigation instructions based on their first four words.
Instructions are read from the centre outwards. Arc lengths are proportional to the
number of instructions containing each word. White areas represent words with

individual contributions too small to show.
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it is comfortably below the minimum starting error of 5m. We do not evaluate the
agent’s entire trajectory as many instructions do not specify the path that should be
taken.

Central to our evaluation is the requirement for the agent to choose to end the
episode when the goal location is identified. We consider stopping to be a fundamen-
tal aspect of completing the task, demonstrating understanding, but also freeing the
agent to potentially undertake further tasks at the goal. However, we acknowledge
that this requirement contrasts with recent works in vision-only navigation that do
not train the agent to stop [Zhu et al., 2017; Mirowski et al., 2017]. To disentangle
the problem of recognising the goal location, we also report success for each agent
under an oracle stopping rule, i.e. if the agent stopped at the closest point to the goal
on its trajectory. Misra et al. [2017] also use this evaluation.

Dataset Splits We follow broadly the same train/val/test split strategy as the Mat-
terport3D dataset [Chang et al., 2017]. The test set consists of 18 scenes, and 4,173
instructions. We reserve an additional 11 scenes and 2,349 instructions for validating
in unseen environments (val unseen). The remaining 61 scenes are pooled together,
with instructions split 14,025 train / 1,020 val seen. Following best practice, goal
locations for the test set will not be released. Instead, we will provide an evaluation
server where agent trajectories may be uploaded for scoring.

7.5 Vision and Language Navigation Agents

In this section, we describe a sequence-to-sequence neural network agent and several
other baselines that we use to explore the difficulty of the R2R navigation task.

7.5.1 Sequence-to-Sequence Model

We model the agent with a recurrent neural network policy using an LSTM-based
[Hochreiter and Schmidhuber, 1997] sequence-to-sequence architecture with an at-
tention mechanism [Bahdanau et al., 2015b]. Recall that the agent begins with a
natural language instruction x̄ = (x1, x2, . . . xL), and an initial image observation o0.
The encoder computes a representation of x̄. At each step t, the decoder observes
representations of the current image ot and the previous action at−1 as input, applies
an attention mechanism to the hidden states of the language encoder, and predicts
a distribution over the next action at. Using this approach, the decoder maintains
an internal memory of the agent’s entire preceding history, which is essential for
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navigating in a partially observable environment [Wierstra et al., 2007]. We discuss
further details in the following sections.

Language instruction encoding Each word xi in the language instruction is pre-
sented sequentially to the encoder LSTM as an embedding vector. We denote the
output of the encoder at step i as hi, such that hi = LSTMenc (xi, hi−1). We denote
h̄ = {h1, h2, . . . , hL} as the encoder context, which will be used in the attention mech-
anism. As with Sutskever et al. [2014], we found it valuable to reverse the order of
words in the input language instruction.

Model action space The simulator action space is state-dependent (refer Section
7.3.2.2), allowing agents to make fine-grained choices between different forward tra-
jectories that are presented. However, in this initial work we simplify our model
action space to 6 actions corresponding to left, right, up, down, forward and stop.
The forward action is defined to always move to the reachable viewpoint that is clos-
est to the centre of the agent’s visual field. The left, right, up and down actions are
defined to move the camera by 30 degrees.

Image and action embedding For each image observation ot, we use a ResNet-152
[He et al., 2016a] CNN pretrained on ImageNet [Russakovsky et al., 2015] to extract
a mean-pooled feature vector. Analogously to the embedding of instruction words,
an embedding is learned for each action. The encoded image and previous action
features are then concatenated together to form a single vector qt. The decoder LSTM
operates as h

′
t = LSTMdec (qt, h

′
t−1).

Action prediction with attention mechanism To predict a distribution over actions
at step t, we first use an attention mechanism to identify the most relevant parts of the
navigation instruction. This is achieved by using the global, general alignment func-
tion described by Luong et al. [2014] to compute an instruction context ct = f (h

′
t, h̄).

When then compute an attentional hidden state h̃t = tanh (Wc[ct; h
′
t]), and calculate

the predictive distribution over the next action as at = softmax (h̃t). Although visual
attention has also proved highly beneficial in vision and language problems [Yang
et al., 2016a; Lu et al., 2016; Anderson et al., 2018a], we leave an investigation of
visual attention in Vision and Language Navigation to future work.

7.5.2 Training

We investigate two training regimes, ‘teacher-forcing’ and ‘student-forcing’. In both
cases, we use cross entropy loss at each step to maximize the likelihood of the
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ground-truth target action a∗t given the previous state-action sequence (s0, a0, s1, a1, . . . , st).
The target output action a∗t is always defined as the next action in the ground-truth
shortest-path trajectory from the agent’s current pose st = (vt, ψt, θt) to the target
location v∗.

Under the ‘teacher-forcing’ [Lamb et al., 2016] approach, at each step during
training the ground-truth target action a∗t is selected, to be conditioned on for the
prediction of later outputs. However, this limits exploration to only states that are
in ground-truth shortest-path trajectory, resulting in a changing input distribution
between training and testing [Ross et al., 2011; Lamb et al., 2016]. To address this
limitation, we also investigate ‘student-forcing’. In this approach, at each step the
next action is sampled from the agent’s output probability distribution. Student-
forcing is equivalent to an online version of DAGGER [Ross et al., 2011], or the
‘always sampling’ approach in scheduled sampling [Bengio et al., 2015]3.

Implementation Details We perform only minimal text preprocessing, converting
all sentences to lower case, tokenizing on white space, and filtering words that do
not occur at least five times. We set the simulator image resolution to 640 × 480 with
a vertical field of view of 60 degrees. We set the number of hidden units in each
LSTM to 512, the size of the input word embedding to 256, and the size of the input
action embedding to 32. Embeddings are learned from random initialisation. We use
dropout of 0.5 on embeddings, CNN features and within the attention model.

As we have discretised the agent’s heading and elevation changes in 30 degree
increments, for fast training we extract and pre-cache all CNN feature vectors. We
train using the Adam optimiser [Kingma and Ba, 2014] with weight decay and a batch
size of 100. In all cases we train for a fixed number of iterations. As the evaluation
is single-shot, at test time we use greedy decoding [Rennie et al., 2017]. Following
standard practice our test set submission is trained on all training and validation
data. Our models are implemented in PyTorch.

7.5.3 Additional Baselines

Learning free We report two learning-free baselines which we denote as Random

and Shortest. The Random agent exploits the characteristics of the dataset by turn-
ing to a randomly selected heading, then completing a total of 5 successful forward

3Scheduled sampling has been shown to improve performance on tasks for which it is difficult to
exactly determine the best next target output a∗t for an arbitrary preceding sequence (e.g. language
generation [Bengio et al., 2015]). However, in our task we can easily determine the shortest trajectory
to the goal location from anywhere, and we found in initial experiments that scheduled sampling
performed worse than student-forcing (i.e., always sampling).
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Trajectory
Length (m)

Navigation
Error (m)

Success
(%)

Oracle
Success (%)

Val Seen:
Shortest 10.19 0.00 100 100
Random 9.58 9.45 15.9 21.4
Teacher-forcing 10.95 8.01 27.1 36.7
Student-forcing 11.33 6.01 38.6 52.9

Val Unseen:
Shortest 9.48 0.00 100 100
Random 9.77 9.23 16.3 22.0
Teacher-forcing 10.67 8.61 19.6 29.1
Student-forcing 8.39 7.81 21.8 28.4

Test (unseen):
Shortest 9.93 0.00 100 100
Random 9.93 9.77 13.2 18.3
Human 11.90 1.61 86.4 90.2
Student-forcing 8.13 7.85 20.4 26.6

Table 7.1: Average R2R navigation results using evaluation metrics defined in Section
7.4.4. Our seq-2-seq model trained with student-forcing achieves promising results
in previously explored environments (Val Seen). Generalisation to previously unseen

environments (Val Unseen / Test) is far more challenging.

actions (when no forward action is available the agent selects right). The Shortest

agent always follows the shortest path to the goal.

Human We quantify human performance by collecting human-generated trajecto-
ries for one third of the test set (1,390 instructions) using AMT. The collection proce-
dure is similar to the dataset collection procedure described in Section 7.4.2, with two
major differences. First, workers are provided with navigation instructions. Second,
the entire scene environment is freely navigable in first-person by clicking on nearby
viewpoints. In effect, workers are provided with the same information received by
an agent in the simulator. To ensure a high standard, we paid workers bonuses for
stopping within 3m of the true goal location.

7.6 Results

As illustrated in Table 7.1, our exploitative Random agent achieves an average suc-
cess rate of 13.2% on the test set (which appears to be slightly more challenging than
the validation sets). In comparison, AMT workers achieve 86.4% success on the test
set, illustrating the high quality of the dataset instructions. Nevertheless, people are
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Figure 7.9: Distribution of navigation error in validation environments. In previously
seen environments student-forcing training achieves 38.6% success (< 3m navigation

error), although this drops to 21.8% in unseen validation environments.

not infallible when it comes to navigation. For example, in the dataset we occasion-
ally observe some confusion between right and left (although this is recoverable if
the instructions contain enough visually-grounded references). In practice, people
also use two additional mechanisms to reduce ambiguity that are not available here,
namely gestures and dialogue.

With regard to the sequence-to-sequence model, student-forcing is a more ef-
fective training regime than teacher-forcing, although it takes longer to train as it
explores more of the environment. Both methods improve significantly over the
Random baseline, as illustrated in Figure 7.9. Using the student-forcing approach
we establish the first test set leaderboard result achieving a 20.4% success rate.

The most surprising aspect of the results is the significant difference between
performance in seen and unseen validation environments (38.6% vs. 21.8% success
for student-forcing). To better explain these results, in Figure 7.10 we plot validation
performance during training. Even using strong regularisation (dropout and weight
decay), performance in unseen environments plateaus quickly, but further training
continues to improve performance in the training environments. This suggests that
the visual groundings learned may be quite specific to the training environments.

Overall, the results illustrate the significant challenges involved in training agents
that can generalise to perform well in previously unseen environments. The tech-
niques and practices used to optimise performance on existing vision and language
datasets are unlikely to be sufficient for models that are expected to operate in new
environments.
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Figure 7.10: Validation loss, navigation error and success rate during training. Our
experiments suggest that neural network approaches can strongly overfit to training
environments, even with regularisation. This makes generalising to unseen environ-

ments challenging.

7.7 Chapter Summary

Vision and Language Navigation (VLN) is important because it represents a signif-
icant step towards capabilities that are critical for practical robotics. To further the
investigation of VLN, in this chapter we introduced the Matterport3D Simulator con-
structed from dense RGB-D imagery of 90 real buildings [Chang et al., 2017]. This
simulator achieves a unique and desirable trade-off between reproducibility, interac-
tivity, and visual realism. Leveraging these advantages, we collected the Room-to-
Room (R2R) dataset. The R2R dataset is the first dataset to evaluate the capability to
follow natural language navigation instructions in previously unseen real images at
building scale. To explore this task we investigated several baselines and a sequence-
to-sequence neural network agent.

From this work we reach three main conclusions. First, VLN is interesting be-
cause existing vision and language methods can be successfully applied. To improve
on our baseline sequence-to-sequence agent, we anticipate that the agent would ben-
efit from a spatial memory [Gupta et al., 2017], rather than relying exclusively on
recurrent neural network (RNN) memory vectors to encode complex geometric con-
text. A visual attention mechanism may also be required. Second, the challenge of
generalising to previously unseen environments is significant. We anticipate that so-
lutions will require models that go beyond simply learning from the training data.
For example, when faced with an instruction containing a novel visual concept such
as ‘Egyptian hieroglyphs’, the VLN agent could use internet resources to search for
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visual representations of this concept at test time, in order to successfully ground this
concept in the environment. Third, crowd-sourced reconstructions of real locations
are a highly-scalable and underutilised resource. The existing Matterport3D data
release constitutes just 90 out of more than 700,000 building scans that have been
already been uploaded by users [Matterport, 2017]. The process used to generate
R2R is applicable to a host of related vision and language problems, particularly in
robotics.

We hope that this simulator will benefit the community by providing a visually-
realistic framework to investigate VLN and related problems such as navigation in-
struction generation, embodied visual question answering, human-robot dialog and
transfer learning.
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Chapter 8

Conclusion and Future Directions

The interaction between vision and language is a promising area for research that
is essential to unlocking numerous practical applications in robotics and artificial
intelligence (AI). In this final chapter, we summarise the main contributions of this
thesis and discuss some open problems and exciting directions for future research.

8.1 Summary

With the increasing focus on combining visual and linguistic learning comes an in-
creasing need for methods that can automatically evaluate the language-based out-
puts of these models. Focusing on automatic image captioning as proxy for visual
and linguistic understanding, in Chapter 4 we presented SPICE, a new metric for
automatically evaluating image captions. Conceptually, SPICE differs from existing
textual similarity metrics by using a meaning representation—the scene graph—to
compare captions rather than using n-grams. Empirically, we demonstrated that
SPICE is the most effective metric for automatically ranking image captioning mod-
els on the COCO dataset. To the extent that semantic parsing techniques continue to
improve, SPICE also offers scope for further improvement.

Equipped with this more effective evaluation metric, in Chapter 5 we addressed
the task of image captioning from the modelling side. Inspired by insights from
neuroscience and psychology, we proposed a bottom-up and top-down visual atten-
tion mechanism. Although visual attention mechanisms have been widely studied,
perhaps surprisingly our work is one of the first to more carefully consider how at-
tention candidates are determined. Moving away from existing work that determines
attention candidates according to a uniform grid of neural receptive fields, our ap-
proach makes objects the basis of attention in the model. Using this approach we
achieved state of the art performance in image captioning as well as visual question
answering (VQA), while simultaneously helping to improve the interpretability of
the resulting systems.
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Notwithstanding significant improvements in image captioning models in recent
years, one of the major hurdles that remains is learning the long tail of visual con-
cepts that occur rarely, but nevertheless must be understood to approach human
performance on vision and language tasks. To begin to address this problem, in
Chapter 6 we introduced constrained beam search, a novel constraint-based decod-
ing algorithm, and demonstrated that it could be used to combine the outputs of
image taggers and image captioning models at test time. This approach allows an
image captioning model to scale to many more visual concepts, particularly if data-
driven image tagging approaches are used. Using this approach we achieved state of
the art performance on an out-of-domain image captioning task without degrading
in-domain performance.

In Chapter 7, the final technical chapter of this thesis, we proposed the task of
Vision-and-Language Navigation (VLN). To support this and other tasks involving
embodied vision and language agents, we introduced the Matterport3D Simulator
constructed from dense RGB-D imagery of 90 real buildings [Chang et al., 2017]. Ad-
ditionally, we collected the Room-to-Room (R2R) dataset which is the first dataset to
evaluate the capability to follow natural language navigation instructions in previ-
ously unseen real images at building scale. VLN is important because it represents
a significant step towards capabilities critical for practical robotics. However, our
investigation of several baselines and a sequence-to-sequence neural network agent
indicates that the challenge of generalising to previously unseen environments is
significant. More generally, the development of good models to solve problems that
involve vision, language and action is still very much an open problem, as we discuss
further below.

8.2 Future Directions

This thesis was motivated by the huge potential for intelligent agents to improve our
lives via domestic service robots, voice-controlled drones, visually-aware virtual per-
sonal assistants, smart buildings and appliances, intelligent surveillance and search
systems for querying image and video, language-based image and video editing
software, personal navigation systems, etc. We conclude with a discussion of some
promising research directions towards realising this potential.

8.2.1 Complete Agents

The traditional artificial intelligence (AI) paradigm defines intelligent agents in terms
of their ability to perceive, reason and act [Winston, 1992]. However, in practice it seems
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difficult to separate reasoning from perception and action planning. In our view, a
‘complete’ intelligent agent is one that can see (in the sense of perceiving and reason-
ing about the complex visual world), communicate (in natural language with humans
and other agents), and act (by moving to gather new information, or by manipulating
other objects or executing instructions). We prefer this more functional characterisa-
tion for several reasons. First, it gives much greater primacy to vision as the chief
mode of perception for humans and increasingly, for agents operating in human
environments. Second, separately identifying communication—which may involve
perception, i.e. listening, and action, i.e. talking—explicitly captures the sociability
required of intelligent agents. This reflects an increasing awareness of the need for
AI systems that work cooperatively and collaboratively with people [Guszcza et al.,
2017], and increasing evidence that the demands of social life may actually underpin
the development of intelligence [Ashton et al., 2018]. Third, this viewpoint much
more clearly illustrates the contributions of various AI subfields—such as computer
vision, natural language processing (NLP) and robotics—to a complete agent, mak-
ing a strong case for interdisciplinary research. Russell and Norvig [2003] stated 15
years ago that ’one consequence of trying to build complete agents is the realization
that the previously isolated subfields of AI might need to be reorganized somewhat
when their results are to be tied together’. In our view, progress in these subfields
is now sufficiently advanced for the areas of intersection to command a greater fo-
cus. Rather than continually seeking to separate computer vision, NLP and robotics
problems, we see enormous potential in future research that focuses on ‘complete’
agents.

8.2.2 Large-scale 3D Datasets as Simulation Environments

Datasets play a central role in machine learning. For example, it is hard to overstate
the impact of the ImageNet dataset [Russakovsky et al., 2015] in terms of its role
in the development of computer vision algorithms, the renewed interest in artificial
neural networks, the paradigm shift towards large-scale datasets and the focus on
benchmark evaluations. What is sometimes forgotten is that it was the abundance
of image data on crowd-based photo sharing websites such as Flickr1 that made Im-
ageNet possible, by providing the photographic raw material for a large annotated
dataset. From our work on Vision-and-Language Navigation (VLN), we conclude
that the burgeoning availability of 3D reconstructions of real locations at scale may
be similarly transformative in terms of providing the raw material to develop datasets
and simulation environments for training embodied vision and language agents. For

1www.flickr.com
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Well, it worked 
in my lab…

Let’s just assume 
‘vision’ is solved…

What do you mean, 
‘move the camera’?

Computer Vision 
researcher

RoboticistNLP 
researcher

Figure 8.1: A light-hearted look at inter-disciplinary research in AI. Traditionally, re-
search in computer vision, natural language processing (NLP) and robotics has tack-
led problems in relative isolation, subject to various limitations (e.g. the use of fully
instrumented environments in NLP, lacking reproducibility and limited comparative
evaluations in robotics, and the use of static image datasets in computer vision). Our
challenge now as a research community is to devise environments, tasks and eval-
uation protocols to train complete agents that see, communicate and act (while still

supporting reproducible evaluations).

example, owners of Matterport cameras have already uploaded more than 700,000
indoor building scans to a cloud platform [Matterport, 2017]. Although this data is
not yet available to the research community, the ability of untrained users to generate
high-quality 3D data and their willingness to do it without payment are promising
signs for future data availability. Similarly, the introduction of millions of cars with
sophisticated sensor suites to support partial or full autonomy will generate enor-
mous amounts of outdoor 3D data. To take advantage of the opportunity presented
by 3D reconstructed environments at scale, as illustrated in Figure 8.1 our challenge
as a research community is to devise environments, tasks and evaluation protocols
that capture the complexity of seeing, communicating and acting, while still support-
ing reproducible evaluations.

8.2.3 The Long Tail

One of the most pressing challenges to developing intelligent agents that achieve
human performance is dealing with the long tail of visual and linguistic concepts
that occur rarely, but are nonetheless tremendously important in practice. In the
context of the tasks examined in this thesis, we illustrate various examples of this
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VQA VQA

Q: Will the goalie stop the ball from
going in the goal?

A: Yes

Q: Is he putting the turkey in or
taking it out of the oven?

A: No

Image Captioning VLN

Model Output: A zebra is laying
down in the grass.

Instruction: ...go past the hieroglpyhs...
Agent: ?

Figure 8.2: Difficulties caused by the long tail of visual and linguistic concepts. In
VQA (top), there are not nearly enough training examples for current models to learn
the concepts of stopping a goal or cooking a turkey. Similarly, datasets for image
captioning and VLN (bottom) cannot possibly contain all the visual concepts that
might be encountered at test time, such as tigers and hieroglyphs. New approaches
are required to tackle this general problem, for example by incorporating internal

physics simulations and improving transfer learning from external data sources.
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phenomenon in Figure 8.2. For example, VQA models cannot correctly answer ques-
tions that require predicting the trajectory of a moving object, or reasoning about
the change of state that occurs after a turkey spends time in the oven, since these
concepts are not well captured in the training data. Similarly, in image captioning,
models trained on the COCO dataset are insufficiently exposed to tigers during train-
ing, but are heavily exposed to zebra images, so they make predictable errors. Finally,
in the VLN task, there are many novel visual concepts in the unseen validation set
that are not mentioned in training, such as hieroglyphs.

For complex vision and language problems such as these, it seems very unlikely
that larger curated datasets will be sufficient to capture all of the concepts, and ‘com-
monsense’ knowledge, that intelligent agents will require to reach human perfor-
mance. Instead, a variety of complementary approaches may be required involv-
ing webly-supervised learning [Chen and Gupta, 2015] and transfer learning [Zamir
et al., 2018a]. One exciting direction for making inferences about the physical world,
such as whether the goalie will stop the ball, is using physics engines as ‘mental mod-
els’ to perform approximate, probabilistic internal simulations [Battaglia et al., 2013].
However, there remains much work to be done in order to automatically initialise
these simulators at a useful level of abstraction from complex scenes like these.
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