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Visual attention

•Vision and language tasks often require fine-
grained visual processing, e.g. VQA:
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Q: What color 
is illuminated 
on the traffic 
light?



Visual attention

3

A: green

Q: What color 
is illuminated 
on the traffic 
light?

•Vision and language tasks often require fine-
grained visual processing, e.g. VQA:



Visual attention

•Visual attention mechanisms learn to focus on 
image regions that are relevant to the task
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Q: What is 
the man 
holding?



Visual attention

•Visual attention mechanisms learn to focus on 
image regions that are relevant to the task
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A: phone

Q: What is 
the man 
holding?



Components of visual attention
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𝒗" = 𝑓(𝒉, 𝑉)attended feature

•Visual attention mechanisms learn to focus on 
image regions that are relevant to the task



Components of visual attention
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𝒗" = 𝑓(𝒉, 𝑉)attended feature

1. set of attention 
candidates, 𝑉

•Visual attention mechanisms learn to focus on 
image regions that are relevant to the task



2. task context representation

Components of visual attention
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1. set of attention 
candidates, 𝑉

•Visual attention mechanisms learn to focus on 
image regions that are relevant to the task



2. task context representation

Components of visual attention
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•Visual attention mechanisms learn to focus on 
image regions that are relevant to the task

𝒗" = 𝑓(𝒉, 𝑉)attended feature

1. set of attention 
candidates, 𝑉

3. learned attention function



Example: Stacked attention networks1

101Yang et al. CVPR 2016



Example: Stacked attention networks1
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1. set of 
attention 
candidates, 𝑉



Example: Stacked attention networks1
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2. task context 
representation

1. set of 
attention 
candidates, 𝑉



Example: Stacked attention networks1

131Yang et al. CVPR 2016 3. learned attention function

1. set of 
attention 
candidates, 𝑉

2. task context 
representation



Attention candidates, 𝑉
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2048
10

10 𝒗*
𝒗+

𝑉 = {𝒗*, … , 𝒗*..}

Standard approach: use the spatial output of a 
CNN to extract vectors for each position in a grid



Attention candidates, 𝑉
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Standard approach: 
spatial output of a CNN

10

10
Our approach:

object-based attention

𝑘 regions



Objects are a natural basis for attention

•Human visual attention can select discrete objects, not 
just spatial regions1

161Egly et al. 1994, Scholl  2001



Objects are a natural basis for attention

•Human visual attention can select discrete objects, not 
just spatial regions1

• Image captioning and VQA are concerned with objects
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A young man on a skateboard 
looking down street with 
people watching.

1Egly et al. 1994, Scholl  2001

Q:Is the boy in the yellow 
shirt wearing head protective 
gear? A: No



Objects are a natural basis for attention

•Human visual attention can select discrete objects, not 
just spatial regions1

• Image captioning and VQA are concerned with objects
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A young man on a skateboard
looking down street with 
people watching.

1Egly et al. 1994, Scholl  2001

Q:Is the boy in the yellow 
shirt wearing head protective 
gear? A: No



Bottom-up and top-down attention
Bottom-up process: Extract all 
objects and other salient regions 
from the image (independent of the 
question / partially-completed 
caption)
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Top-down process: Given task 
context, weight the attention 
candidates (i.e., use existing VQA / 
captioning models)

𝑉
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Our approach: bottom-up attention (using Faster R-CNN2)
Attention candidates, 𝑉

2Ren et al. NIPS, 2015
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Our approach: bottom-up attention (using Faster R-CNN2)
Attention candidates, 𝑉

2Ren et al. NIPS, 2015
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Our approach: bottom-up attention (using Faster R-CNN2)
Attention candidates, 𝑉

2Ren et al. NIPS, 2015

Classifiers	&	
bbox

regressors
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Our approach: bottom-up attention (using Faster R-CNN2)
• Each salient object / image region is detected and 

represented by its mean-pooled feature vector

Attention candidates, 𝑉

𝒗*
𝒗+
𝒗1

𝑉 = {𝒗*, … , 𝒗2}

2Ren et al. NIPS, 2015



Faster R-CNN pre-training

Using Visual Genome3 with:
• 1600 filtered object classes
• 400 filtered attribute classes

243Krishna et al. arXiv 1602.07332, 2016

bench

worn

wooden

grey weathered
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ResNet (10×10): A man sitting on a toilet in a bathroom.

Up-Down (Ours): A man sitting on a couch in a bathroom.
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Up-Down (Ours): A brown sheep standing in a field of grass.



COCO Captions results
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1st COCO Captions leaderboard (July 2017)

BLEU-4 METEOR CIDEr SPICE
ResNet (10×10) 34.0 26.5 111.1 20.2
Up-Down	(Ours) 36.3 27.7 120.1 21.4

COCO	Captions	“Karpathy”	test	set	(single-model):
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1st COCO Captions leaderboard (July 2017)

BLEU-4 METEOR CIDEr SPICE
ResNet (10×10) 34.0 26.5 111.1 20.2
Up-Down	(Ours) 36.3 27.7 120.1 21.4

COCO	Captions	“Karpathy”	test	set	(single-model):

+8%



COCO Captions results

31

1st COCO Captions leaderboard (July 2017)

BLEU-4 METEOR CIDEr SPICE
ResNet (10×10) 34.0 26.5 111.1 20.2
Up-Down	(Ours) 36.3 27.7 120.1 21.4

+6%

COCO	Captions	“Karpathy”	test	set	(single-model):

+8%



VQA examples
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Q: What room are they 
in?

A: kitchen



VQA examples - counting
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Q: How many oranges 
are on pedestals?

A: two



VQA examples - reading
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Q: What is the name of 
the realty company?

A: none



VQA results

• 1st 2017 VQA Challenge (June 2017)
• Top three 2018 Challenge entries used our approach
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Yes/No Number Other Overall
ResNet (1×1) 76.0 36.5 46.8 56.3
ResNet	(14×14) 76.6 36.2 49.5 57.9
ResNet	(7×7) 77.6 37.7 51.5 59.4
Up-Down	(Ours) 80.3 42.8 55.8 63.2

VQA	v2	val set	(single-model):



VQA results
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Yes/No Number Other Overall
ResNet (1×1) 76.0 36.5 46.8 56.3
ResNet	(14×14) 76.6 36.2 49.5 57.9
ResNet	(7×7) 77.6 37.7 51.5 59.4
Up-Down	(Ours) 80.3 42.8 55.8 63.2

VQA	v2	val set	(single-model):

+4%

• 1st 2017 VQA Challenge (June 2017)
• Top three 2018 Challenge entries used our approach



Benefits of ‘Up-Down’ attention

•Natural approach
•Unifies vision & language tasks with object 

detection models
• Transfer learning by pre-training on object 

detection datasets
•Complementary to other models (just swap 

attention candidates)
•Can be fine-tuned
•More interpretable attention weights
• Significant improvements on multiple tasks 37



Poster C12 
Code, models and drop-in pre-trained COCO image 

features available at:
http://www.panderson.me/up-down-attention

Related Work: ‘Tips and Tricks for Visual Question 
Answering: Learnings From the 2017 Challenge’, also at 

CVPR 2018, Poster J21
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