

Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering

Peter Anderson^{1†}, Xiaodong He^{2‡}, Chris Buehler², Damien Teney³, Mark Johnson⁴, Stephen Gould¹, Lei Zhang²

¹Australian National University, ²Microsoft Research, ³University of Adelaide, ⁴Macquarie University, [†]Moving to Georgia Tech, [‡]Now at JD AI Research

• Vision and language tasks often require finegrained visual processing, e.g. VQA:

Q: What color is illuminated on the traffic light?

- Vision and language tasks often require finegrained visual processing, e.g. VQA:
 - Q: What color is illuminated on the traffic light?
 - A: green

 Visual attention mechanisms learn to focus on image regions that are relevant to the task

Q: What is the man holding?

- Visual attention mechanisms learn to focus on image regions that are relevant to the task
 - Q: What is the man holding?
 - A: phone

 Visual attention mechanisms learn to focus on image regions that are relevant to the task

attended feature $\longrightarrow \hat{\boldsymbol{v}} = f(\boldsymbol{h}, V)$

 Visual attention mechanisms learn to focus on image regions that are relevant to the task

attended feature
$$\longrightarrow \hat{v} = f(h, V)$$

1. set of attention
candidates, V

 Visual attention mechanisms learn to focus on image regions that are relevant to the task

• Visual attention mechanisms learn to focus on image regions that are relevant to the task

¹Yang et al. CVPR 2016

10

¹Yang *et al.* CVPR 2016

¹Yang et al. CVPR 2016

Standard approach: use the spatial output of a CNN to extract vectors for each position in a grid

k regions

Our approach: object-based attention

Objects are a natural basis for attention

 Human visual attention can select discrete objects, not just spatial regions¹

Objects are a natural basis for attention

- Human visual attention can select discrete objects, not just spatial regions¹
- Image captioning and VQA are concerned with objects

A young man on a skateboard looking down street with people watching.

Q:Is the boy in the yellow shirt wearing head protective gear? A: No

¹Egly et al. 1994, Scholl 2001

Objects are a natural basis for attention

- Human visual attention can select discrete objects, not just spatial regions¹
- Image captioning and VQA are concerned with objects

A young man on a skateboard looking down street with people watching.

Q:Is the boy in the yellow shirt wearing head protective gear? A: No

¹Egly et al. 1994, Scholl 2001

Bottom-up and top-down attention

Bottom-up process: Extract all objects and other salient regions from the image (independent of the question / partially-completed caption)

Top-down process: Given task context, weight the attention candidates (i.e., use existing VQA / captioning models)

Our approach: bottom-up attention (using Faster R-CNN²)

²Ren *et al*. NIPS, 2015

Our approach: bottom-up attention (using Faster R-CNN²)

Our approach: bottom-up attention (using Faster R-CNN²)

Our approach: bottom-up attention (using Faster R-CNN²)

 Each salient object / image region is detected and represented by its mean-pooled feature vector

Faster R-CNN pre-training

Using Visual Genome³ with:

- 1600 filtered object classes
- 400 filtered attribute classes

³Krishna *et al.* arXiv 1602.07332, 2016

ResNet(10×10): A man sitting on a toilet in a bathroom.

Up-Down (Ours): A man sitting on a couch in a bathroom.

27

Up-Down (Ours): A brown sheep standing in a field of grass.

COCO Captions results

1st COCO Captions leaderboard (July 2017)

COCO Captions "Karpathy" test set (single-model):

	BLEU-4	METEOR	CIDEr	SPICE
ResNet (10×10)	34.0	26.5	111.1	20.2
Up-Down (Ours)	36.3	27.7	120.1	21.4

COCO Captions results

1st COCO Captions leaderboard (July 2017)

COCO Captions "Karpathy" test set (single-model):

	BLEU-4	METEOR	CIDEr	SPICE
ResNet (10×10)	34.0	26.5	111.1	20.2
Up-Down (Ours)	36.3	27.7	120.1	21.4
		+8%		

COCO Captions results

1st COCO Captions leaderboard (July 2017)

COCO Captions "Karpathy" test set (single-model):

			+8%	+6%	
Up-Down (Ours)	36.3	27.7	120.1	21.4	
ResNet (10×10)	34.0	26.5	111.1	20.2	
	BLEU-4	METEOR	CIDEr	SPICE	

VQA examples

Q: What room are they A: kitchen in?

VQA examples - counting

Q: How many oranges A: two are on pedestals?

VQA examples - reading

Q: What is the name of A: none the realty company?

VQA results

- 1st 2017 VQA Challenge (June 2017)
- Top three 2018 Challenge entries used our approach

	Yes/No	Number	Other	Overall
ResNet (1×1)	76.0	36.5	46.8	56.3
ResNet (14×14)	76.6	36.2	49.5	57.9
ResNet (7×7)	77.6	37.7	51.5	59.4
Up-Down (Ours)	80.3	42.8	55.8	63.2

VQA v2 val set (single-model):

VQA results

- 1st 2017 VQA Challenge (June 2017)
- Top three 2018 Challenge entries used our approach

					_
	Yes/No	Number	Other	Overall	_
ResNet (1×1)	76.0	36.5	46.8	56.3	-
ResNet (14×14)	76.6	36.2	49.5	57.9	
ResNet (7×7)	77.6	37.7	51.5	59.4	+4%
Up-Down (Ours)	80.3	42.8	55.8	63.2	_

VQA v2 val set (single-model):

Benefits of 'Up-Down' attention

- Natural approach
- Unifies vision & language tasks with object detection models
- Transfer learning by pre-training on object detection datasets
- Complementary to other models (just swap attention candidates)
- Can be fine-tuned
- More interpretable attention weights
- Significant improvements on multiple tasks 37

Poster C12

Code, models and drop-in pre-trained COCO image features available at:

http://www.panderson.me/up-down-attention

Related Work: 'Tips and Tricks for Visual Question Answering: Learnings From the 2017 Challenge', also at CVPR 2018, Poster J21

