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Visual attention

*Vision and language tasks often require fine-
grained visual processing, e.g. VQA:

Q: What color | |
is illuminated [~
on the traffic B
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Components of visual attention
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Example: Stacked attention networks’

feature vectors of different
parts of image
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Attention candidates, V

Standard approach: use the spatial output of a
CNN to extract vectors for each position in a grid
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Attention candidates, I/

W < regions

Standard approach: Our approach:

spatial output of a CNN  object-based attention 15



Objects are a natural basis for attention

* Human visual attention can select discrete objects, not
just spatial regions’

'Egly et al. 1994, Scholl 2001
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Bottom-up and top-down attention

Bottom-up process: Extract all
objects and other salient regions
from the image (independent of the
question / partially-completed
caption)

Top-down process: Given task
context, weight the attention

-7 candidates (i.e., use existing VQA /

captioning models)
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Attention candidates, V
Our approach: bottom-up attention (using Faster R-CNN?)
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Attention candidates, I/

Our approach: bottom-up attention (using Faster R-CNN?)

« Each salient object / image region is detected and
represented by its mean-pooled feature vector

V = {vl, ...,vk}
ad ' Uy
= d 1 V5
e d ) V3

2Ren et al. NIPS, 2015



Faster R-CNN pre-training

Using Visual Genome? with:
* 1600 filtered object classes [ bench}
* 400 filtered attribute classes

weathered }

wooden }

SKrishna et al. arXiv 1602.07332, 2016
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ResNet (10x10): A man sitting on a #£eilet in a bathroom.

i

]

Up-Down (Ours): A man sitting on a couch in a bathroom.

27



Up-Down (Ours): A brown sheep standing in a field of grass.




COCO Captions results

(July 2017)

COCO Captions “Karpathy” test set (single-model):

BLEU-4 METEOR CIDEr SPICE

ResNet (10x10) 34.0 26.5 111.1 20.2
Up-Down (Ours) 36.3 27.7 120.1 21.4
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VQA examples

Q: What room are they
in?

A: kitchen
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VQA examples - counting

Q: How many oranges A: £we
are on pedestals?
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VQA examples - reading

QO: What is the name of A: nene
the realty company?

34



VQA results

(June 2017)
* Top three 2018 Challenge entries used our approach

VQA v2 val set (single-model):

Yes/No Number Other Overall
ResNet (1x1) 76.0 36.5 46.8 56.3
ResNet (14x14) 76.6 36.2 49.5 57.9
ResNet (7x7) 77.6 37.7 51.5 59.4

Up-Down (Ours) 80.3 42.8 55.8 63.2
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Benefits of ‘Up-Down’ attention

» Natural approach

* Unifies vision & language tasks with object
detection models

* Transfer learning by pre-training on object
detection datasets

« Complementary to other models (just swap
attention candidates)

* Can be fine-tuned
* More interpretable attention weights
» Significant improvements on multiple tasks -




Poster C12

Code, models and drop-in pre-trained COCO image
features available at:

http://www.panderson.me/up-down-attention

Related Work: ‘Tips and Tricks for Visual Question
Answering: Learnings From the 2017 Challenge’, also at
CVPR 2018, Poster J21
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