

1. The Novel Object Captioning Task

- Describe images containing novel objects (not present in the available imagecaption training data) by learning from image labels or object annotations
- Motivation: Scaling image captioning to many more visual concepts, without collecting expensive caption training data

Training data¹:

Image-caption data (for 72 COCO classes)

Caption: An old fashioned yellow car waits at a stoplight

(Classes considered In-Domain at test time)

Image label data (for 8 COCO classes)

Labels for this image: person, bus, scooter, van, white, vellow

(Classes considered Out-of-Domain at test time)

3. Constrained Beam Search² (CBS)

• CBS decoding example with beam size 2, at time step 4. There is one search beam for each state in the FSA. Beam 3 corresponds to the FSA accepting state s_3 .

Partially-Supervised Image Captioning

Peter Anderson Macquarie University (now Georgia Tech)

Stephen Gould

Australian National University

persor

person

persor

person

2. Approach: Partially-Specified Sequence Supervision (PS3)

- A general algorithm for training RNNs on partially-specified sequences
- Given a dataset of partially-specified training sequences X and current model parameters θ , iterate these two steps:

Step 1: Estimate the complete data *Y* by approximating $y^i \leftarrow \operatorname{argmax}_{v} p_{\theta}(y|A^i) \forall x^i \in X$ using constrained beam search² (CBS), where $A^{i} = (\Sigma, S^{i}, s_{0}^{i}, \delta^{i}, F^{i})$ is an FSA that recognizes sequences that are consistent with the observed partially-specified sequence x^i . **Step 2**: Learn (or update) the model parameters by setting $\theta \leftarrow \operatorname{argmax}_{\theta} \sum_{y \in Y} \log p_{\theta}(y)$

Example: A minibatch of images with both complete and partially-specified captions

Minibatch Iter (complete caption)

Step 2: Backprop errors using the entire vocab & minibatch as usual

Step 1: Determine high-probability complete captions based on image labels

References

¹Hendricks *et al.* Deep Compositional Captioning: Describing Novel Object Categories without Paired Training Data. CVPR 2016 ²Anderson *et al.* Guided Open Vocabulary Image Captioning with Constrained Beam Search. EMNLP 2017 ³Kuznetsova *et al.* The Open Images Dataset V4: Unified image classification, object detection, and visual relationship detection at scale. arXiv:1811.00982, 2018 ⁴Anderson *et al.* Bottom-Up and Top-Down Attention for Image Captioning and Visual Question Answering. CVPR 2018

Mark Johnson

Macquarie University

4. Results and Examples

COCO novel object captioning validation set scores.

	Training	PS3	CBS	Out-of-l	Out-of-Domain Scores			In-Domain Scores	
	Captions	Labels	Labels	SPICE	CIDEr	F1	SPICE	CIDEr	
Baseline CBS PS3 PS3 + CBS		•	▲	14.4 15.9 18.3 18.2	69.5 74.8 94.3 92.5	0.0 26.9 63.4 62.4	19.9 19.7 18.9 19.1	108.6 102.4 101.2 99.5	3
CBS (GT) PS3 + CBS (GT) Baseline (GT)		•	* *	18.0 20.1 20.1	82.5 95.5 111.5	30.4 65.0 69.0	22.3 21.7 20.0	109.7 106.6 109.5	

• = full training set, • = impoverished training set, \blacktriangle = constrained beam search (CBS) decoding with predicted labels, $\star = CBS$ decoding with ground-truth labels

Performance on the COCO novel object captioning test set. PS3 applied to the Bottom-Up and Top-Down captioning model⁴ outperforms all prior work.

		Out-of-Domain Scores				In-Domain Scores			
Model	CNN	SPICE	METEOR	CIDEr	F1	SPICE	METEOR	CIDEr	
DCC	VGG-16	13.4	21.0	59.1	39.8	15.9	23.0	77.2	
NOC	VGG-16	-	21.3	-	48.8	-	-	-	
C-LSTM	VGG-16	-	23.0	-	55.7	-	-	-	
LRCN + CBS	VGG-16	15.9	23.3	77.9	54.0	18.0	24.5	86.3	
LRCN + CBS	Res-50	16.4	23.6	77.6	53.3	18.4	24.9	88.0	
NBT	VGG-16	15.7	22.8	77.0	48.5	17.5	24.3	87.4	
NBT + CBS	Res-101	17.4	24.1	86.0	70.3	18.0	25.0	92.1	
PS3 (ours)	Res-101	17.9	25.4	94.5	63.0	19.0	25.9	101.1	

Baseline: A food truck parked on the side of a road. Ours: A white bus driving down a city street.

Baseline: A collage of four pictures of food.

Ours: A set of pictures showing a slice of <u>pizza</u>.

Attention visualization: Novel objects (such as racket) are correctly grounded.

Imposing FSA constraints during training using PS3 always improves the **Out-of-Domain** scores

Imposing FSA constraints at test time using CBS adds no further improvement

Baseline: A zebra is laying down in the grass.

Ours: A tiger that is sitting in the grass.

d is sittina or

Open Images: 600 Classes

black umbrella

and an accordion

are swimming close to the base of the ocean