

THE AUSTRALIAN NATIONAL UNIVERSITY

SPICE: Semantic Propositional Image Caption Evaluation

Presented to the COCO Consortium, Sept 2016

Peter Anderson¹, Basura Fernando¹, Mark Johnson² and Stephen Gould¹

¹ Australian National University ² Macquarie University

Image captioning

The man at bat readies to swing at the pitch while the umpire looks on.

Source: MS COCO Captions dataset

A large bus sitting next to a very tall building.

Source: http://aipoly.com/

Automatic caption evaluation

- Benchmark datasets require fast to compute, accurate and inexpensive evaluation metrics
- Good metrics can be used to help construct better models

The Evaluation Task:

Given a candidate caption c_i and a set of mreference captions $R_i = \{r_{i1}, \dots, r_{im}\}$, compute a score S_i that represents similarity between c_i and R_i .

Existing state of the art

• Nearest neighbour captions often ranked higher than human captions

	CIDEr-D	Meteor	ROUGE-L	BLEU-1	BLEU-2	BLEU-3	BLEU-4
MSR Captivator ^[9]	0.937	0.339	0.68	0.907	0.819	0.71	0.601
Google ^[4]	0.946	0.346	0.682	0.895	0.802	0.694	0.587
m-RNN (Baidu/ UCLA) ^[16]	0.896	0.32	0.668	0.89	0.801	0.69	0.578
m-RNN ^[15]	0.935	0.325	0.666	0.89	0.798	0.687	0.575
MSR ^[8]	0.925	0.331	0.662	0.88	0.789	0.678	0.567
PicSOM ^[13]	0.856	0.318	0.654	0.875	0.775	0.663	0.554
Nearest Neighbor ^[11]	5	9	9	9	8	7	7
Berkeley LRCN ^[2]	0.891	0.322	0.656	0.871	0.772	0.653	0.534
Montreal/Toronto ^[10]	0.878	0.323	0.651	0.872	0.768	0.644	0.523
MLBL ^[7]	0.752	0.294	0.635	0.848	0.747	0.633	0.517
Tsinghua Bigeye ^[14]	0.682	0.273	0.616	0.866	0.756	0.628	0.493
ACVT ^[1]	0.716	0.288	0.617	0.831	0.713	0.589	0.478
Human ^[5]	6	3	11	6	12	12	13

Source: Lin Cui, Large-scale Scene UNderstanding Workshop, CVPR 2015

Existing metrics

- **BLEU:** Precision with brevity penalty, geometric mean over n-grams
- **ROUGE-L:** *F*-score based on Longest Common Substring
- **METEOR:** Align fragments, take harmonic mean of precision & recall
- **CIDEr:** Cosine similarity with TF-IDF weighting

Motivation

'False positive'
(High n-gram similarity)

A young girl standing on top of a tennis court.

A giraffe standing on top of a green field.

'False negative'

The pan on the stove has chopped vegetables in it.

...n-gram overlap is not necessary or sufficient for two sentences to mean the same ...SPICE primarily addresses false positives

Source: MS COCO Captions dataset

Is this a good caption?

"A young girl standing on top of a basketball court"

Is this a good caption?

"A young girl standing on top of a basketball court"

Semantic propositions:

 There is girl
 The girl is young
 The girl is standing
 There is court
 The court is used for basketball
 The girl is on the court

Key Idea – scene graphs¹

4. Tuples

(girl) (court) (girl, young) (girl, standing) (court, tennis) (girl, on-top-of, court)

¹Johnson et. al. Image Retrieval Using Scene Graphs, CVPR 2015

² Klein & Manning: Accurate Unlexicalized Parsing, ACL 2003

³ Schuster et. al: Generating semantically precise scene graphs from textual descriptions for improved image retrieval, EMNLP 2015

SPICE Calculation

SPICE calculated as an F-score over tuples, with:

- Merging of synonymous nodes, and
- Wordnet synsets used for tuple matching and merging.

Given candidate caption c, a set of reference captions S, and the mapping T from captions to tuples:

$$P(c,S) = \frac{|T(c) \otimes T(S)|}{|T(c)|}$$
$$R(c,S) = \frac{|T(c) \otimes T(S)|}{|T(S)|}$$
$$SPICE(c,S) = F_1(c,S) = \frac{2 \cdot P(c,S) \cdot R(c,S)}{P(c,S) + R(c,S)}$$

Example – good caption

Reference captions

"People playing with kites outside in the desert." "A group of people at a park flying a kite." "A group of people flying a kite on a sandy beach" "People on the beach flying kites in the wind." "A couple people out flying a kite on some sand."

Candidate caption & scene graph "a group of people flying kites on a beach"

ARC Centre of Excellence for Robotic Vision

Reference scene graph

Example – good caption

Reference captions

"a dog is sitting inside of a black suitcase" "The bulldog is sitting inside the travel bag." "A dog laying in a piece of black luggage." "A dog sits in an open suitcase that is on a hardwood floor." "A dog sitting inside an empty luggage bag on the floor"

Reference scene graph Candidate caption & scene graph "a dog sitting in a suitcase on the floor" hardwood Ofloor Odog Oopen Osit of Don Osuitcase Olay in Sit in Don obulldog Sit-inside suitcase/bag Otravel Ofloor piece Tempty Odoa black Oluggage

SPICE F-Score: 0.348, Pr: 1, Re: 0.211

Example – weak caption

Reference captions

- "A woman is waiting for a train. "
- "A woman waiting at a train station with a suit case."
- "A person with a suitcase stands waits near the train tracks. "
- "A young woman in a red skirt is waiting on a train platform with her suitcase. "
- "A woman waiting for a train with her luggage beside her."

Reference scene graph

Candidate caption & scene graph

"a group of people standing next to a train"

Example – weak caption

Reference captions

"The restaurant presents a gourmet breakfast of eggs and toast." "A full plate of dessert, bread, and a veggie pizza. " "A breakfast plate containing eggs, bread and french toast." "A plate of food that includes toast, hash browns and eggs with cheese."

"A cheese omelet with toast on a plate."

Reference scene graph

Candidate caption & scene graph

"a close up of a sandwich on a plate"

Evaluation – MS COCO (C40)

Pearson ρ correlation between evaluation metrics and human judgments for the 15 competition entries plus human captions in the 2015 COCO Captioning Challenge, using 40 reference captions.

	M1		M2		M3		$\mathbf{M4}$		M5	
	ρ	p-value	ρ	p-value	ρ	p-value	ρ	p-value	ρ	p-value
Bleu-1	0.24	(0.369)	0.29	(0.271)	0.72	(0.002)	-0.54	(0.030)	0.44	(0.091)
Bleu-4	0.05	(0.862)	0.10	(0.703)	0.58	(0.018)	-0.63	(0.010)	0.30	(0.265)
ROUGE-L	0.15	(0.590)	0.20	(0.469)	0.65	(0.006)	-0.55	(0.030)	0.38	(0.142)
METEOR	0.53	(0.036)	0.57	(0.022)	0.86	(0.000)	-0.10	(0.710)	0.74	(0.001)
CIDEr	0.43	(0.097)	0.47	(0.070)	0.81	(0.000)	-0.21	(0.430)	0.65	(0.007)
$\operatorname{SPICE}\operatorname{-exact}$	0.84	(0.000)	0.86	(0.000)	0.90	(0.000)	0.39	(0.000)	0.95	(0.000)
SPICE	0.88	(0.000)	0.89	(0.000)	0.89	(0.000)	0.46	(0.070)	0.97	(0.000)
M1	Percentage of captions evaluated as better or equal to human caption.									
M2	Percentage of captions that pass the Turing Test.									
M3	Average correctness of the captions on a scale 1–5 (incorrect - correct).									
M4	Average detail of the captions from 1–5 (lacking details - very detailed).									
M5	Percentage of captions that are similar to human description.									

Source: Our thanks to the COCO Consortium for performing this evaluation using MS COCO Captions C40.

Evaluation – MS COCO (C40)

SPICE picks the same top-5 as human evaluators.

Absolute scores are lower with 40 reference captions (compared to 5 reference captions)

Source: Our thanks to the COCO Consortium for performing this evaluation using MS COCO Captions C40.

Gameability

- SPICE measures how well caption models recover objects, attributes and relations
- Fluency is neglected (as with n-gram metrics)
- If fluency is a concern, include a fluency metric such as *surprisal**

*Hale, J: A probabilistic Earley Parser as a Psycholinguistic Model 2001; Levy, R: Expectation-based syntactic comprehension 2008

SPICE for error analysis

Breakdown of SPICE F-score over objects, attributes and relations

Can caption models count?

Breakdown of attribute F-score over color, number and size attributes

Summary

- SPICE measures how well caption models recover objects, attributes and relations
- SPICE captures human judgment better than CIDEr, BLEU, METEOR and ROUGE
- Tuples can be categorized for detailed error analysis
- Scope for further improvement as better semantic parsers are developed
- <u>Next steps:</u> Using SPICE to build better caption models!

Thank you

Link: SPICE Project Page (http://panderson.me/spice) Acknowledgement: We are grateful to the COCO Consortium for re-evaluating the 2015 Captioning Challenge entries using SPICE.

