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Abstract

Robotic competitions encourage a developmen-
tal style of research and development where
large scale robotic systems are incrementally
constructed as a whole. This differs from the
typical research approach of solving a specific
problem in isolation, but is a crucial part of
reaching the long-term goals of complex Al sys-
tems. This paper outlines the innovation and
development of the autonomous UNSW multi-
robotic system (rUNSWift) that was entered in
the Standard Platform Soccer League at the In-
ternational RoboCup competition in 2012. The
challenge is to deliver real-time functionality
within the limited resources of an on-board pro-
cessor. Novel developments in 2012 include:
SLAM using one-dimensional SURF features
with visual-odometry as a by-product; extend-
ing foveated imaging to field-line detection; a
unified field-feature sensor model; a dual-mode
Kalman filter to help disambiguate the sym-
metric field; robot-detection data-fusing visual
and sonar observations; multi-robot tracking
of the ball; and omni-directional kicking. The
rUNSWift system was ranked in the top three
world-wide.

1 Introduction

The focus in Al on solving specific problems in isolation
means that often system integration and development go
unnoticed. As noted by Konforti[Konforti, 2006], many
intelligent systems capable of solving complex problems
are often the sum of many simpler systems. Each of these
simpler systems may be unintelligent in isolation, but
when properly combined they are capable of intelligent
behaviours. Cohen[Cohen, 2005] also suggests that the
traditional “divide and conquer” approach to research
isn’t the best approach to the primary long-term goals of
AT Instead he urges that the most challenging problems

are best solved using a developmental approach, where
an integrated whole system evolves over time. With this
in mind, this paper presents the 2012 evolution of the au-
tonomous UNSW multi-robot system (rUNSWift) that
competes in the International RoboCup Standard Plat-
form League (SPL) soccer competition (Figure 1).

Figure 1: rUNSWift (Blue) in action at the 2012
Robocup SPL Competition.

The RoboCup Standard Platform League uses the
Aldebaran-Robotics humanoid robot called Nao (Figure
2[Aldebaraan-Robotics, 2012b]). Each game runs for two
10 minute halves where two robotic teams, comprising
four Naos each, compete on a 6m x 4m soccer field. In
2012, for the first time, this field is symmetric about the
half-way line as both goal posts are now coloured yellow.
One of the new challenges is to maintain localisation of
the team during the tussle of the match to continue kick-
ing towards the right goal. In addition, 2012 hardware
changes include a processor upgraded from a 500MHz
GEODE to a 1.6GHz Intel Atom, and improved resolu-
tion for both cameras that can now be accessed simul-
taneously, increasing the effective vertical field of view
from 34 degrees to 86 degrees.

The major components of the rUNSWift robotic ar-
chitecture include perception, localisation, motion, and
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Figure 2: An Aldebaran Nao used in the Robocup SPL
Competition.

behaviour [Ashar et al., 2010]. The past 12 months saw
considerable innovations in all components, which we de-
scribe in the rest of this paper. They are:

e Exploiting the camera resolution and increase in
field of view, particularly for field-line detection us-
ing foveate imaging.

e A unified field-feature sensor model that adapts the
iterative closest point algorithm to work with dis-
parate higher level visual features. Features include
the team ball to help disambiguate the field-ends.

e A “Natural Landmark” simultaneous localisation
and mapping system that achieves real-time recog-
nition by adapting SURF to one dimension and uses
the special properties of horizon pixels.

e Visual odometry that uses the above speeded up
robust features

e Robot Detection using a combined vision and sonar
system able to detect multiple robots at varying dis-
tances and headings

e Team Ball Tracking by fusing data from multiple
robots

e Multi-Modal Kalman filter to help solve the “kid-
napped robot” problem and in particular to cope
with the field symmetry.

e Omni-directional kicking for increased reactiveness
during play.

We conclude with results showing performance im-
provement of individual and team behaviour that inte-
grates these developments in the rUNSWift architecture.
We also provide results showing the performance of the
rUNSWift team in international competition.

2 Exploiting the Camera Resolution
and FOV

The hardware improvements to the robots in 2012 offered
a huge amount of potential to improve all aspects of the
rUNSWift vision system. Access to both cameras at the
same time allowed simultaneous tracking of the ball and
field features. This in turn removed the need for any
pause in game play to actively localise, since the robot is
constantly receiving confirmation of its position. Figure
3 shows the extra features on offer when lining up the
ball with two cameras instead of one.

Figure 3: Left: the robot’s position on the field and
observed features. Right: What the robot sees whilst
shooting a goal.

In addition to this, the increased processing power al-
lowed the resolution of the top camera image to be dou-
bled. As a result of this, the robot is able to detect field
lines up to 3m away, instead of only 1.5m away in 2011.
It is also able to reliably track the ball 6m (length of
the field) away instead of 4.5m in 2011. Figure 4 shows
the goal keeper now being able to detect the centre cir-
cle from its own goal box, allowing it to stay localised
without looking away from the ball. It also shows that
the goal keeper can track the ball from the other side of
the field, which helps the team maintain a strong belief
about where the ball is at any point in time.

Figure 4: Left: the field showing the goal keeper’s po-
sition and observations. Right: the camera images the
robot can see.



3 Unified Field-feature Sensor Model

The rUNSWift vision system returns a list of field fea-
tures observed by the robot each cycle. These features
include goal posts, single lines, parallel lines, corners, T-
junctions, circles and field edges. All of these observed
features can assist with determining the robot’s pose (lo-
cation on the field and heading), however the nature of
a soccer field means that these features aren’t unique.
This makes it often impossible to determine a robot’s
exact pose from a single feature. In saying that though,
often multiple features are observed at once, providing
an opportunity to combine these observations to narrow
down the robot’s possible pose.

In the past rtUNSWift has performed multiple updates
of a filter per cycle, one update per feature observed.
This not only breaks the assumption of one update per
cycle, but also doesn’t utilise the extra information avail-
able from the specific combination of features observed.
In 2012, a new approach was taken where all the ob-
served features are combined using a modified ICP [Chen
and Medioni, 1991] algorithm into one pose update, thus
maximising the information utilisation of each frame.

The steps used to calculate the pose of the robot are:

1. Mapping observed field-features from robot rela-
tive coordinates to field coordinates, using the prior
robot pose estimate xx_1, yx—1 and Ox_1. In the
first iteration this robot pose estimate is provided
by the localisation filter, in subsequent iterations
the computed pose is used.

2. Hierarchically Matching observed field-features
with the nearest equivalent features on the SPL field
map, starting with the most distinctive feature in
the early iterations, and gradually including less dis-
tinctive features in subsequent iterations.

3. Representing matched field-features using 2D
point pairs.

4. Weighting the corresponding pairs appropriately,
given the confidence level of the observation.

5. Assigning a squared Euclidean distance error met-
ric based on the distance between point pairs.

6. Minimising the error metric by finding a new robot
post estimate g, yi and 0.

7. Iterating the above steps to further improve the
robot pose and to allow any incorrectly associated
features to be matched correctly.

It should be obvious that this algorithm has a lot of
similarities to the standard ICP approach except that it
has been tweaked for this specific application. Figure 5
shows some examples of the algorithm’s ability to con-
verge on the correct location given up to 45° error in the
initial estimate. In each diagram, the two pictures on the

right are the colour classified images from the camera,
essentially what the robot can see in that frame. The
field view on the left shows the pose estimate (yellow)
and the identified features nearby. The orange area en-
compasses the space in which the robot’s initial pose can
start and still return the correct pose estimate for that
frame.

Figure 5: Some examples of the sensor model converging
to the correct estimate from various locations around the
field.



4 Visual odometry

A new module developed in 2012 was a visual odometry
system. This vision module analyses the pixels along
the horizon (pixels level with the robot’s eyes) and mon-
itors their change between frames. The feature identi-
fication is done using a novel 1D SURF developed by
Peter Anderson[Anderson, 2012] that was highly opti-
mised to run on the robot. The features matching is done
using nearest neighbour matching in combination with
RANSAC. The relative effectiveness at feature matching
is shown in the ROC curve in Figure 6.
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Figure 6: Comparison between SURF and Anderson’s
1D SURF

Using this information, a rotational visual odome-
try module was created that allows the robot to track
changes in its heading. The data from this module is
utilised in two different ways in the rUNSWift system,
one for tuning motion odometry and the other for colli-
sion detection.

The motion odometry of the robot is fairly accurate in
its ability to calculate forward movement, however often
struggles with the angle due to slipping of the feet when
turning. By combining the visual and motion odom-
etry readings, the system can use the best aspects of
both to come up with a more accurate estimate of the
robot’s motion. Figure 7 shows the odometry tracks for
a robot walking in a 2m box shape (clockwise and an-
ticlockwise) around an SPL field. It highlights the dif-
ference between the original motion odometry and the
improvement achieved by integrating visual features as
well.

The other application of this module is collision detec-
tion. In robot soccer there are regular collisions between
robots as they tussle for the ball and for position, how-
ever detecting and responding to these collisions is dif-
ficult. One interesting aspect of these collisions is that
the robot is usually rotated around as a result of the
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Figure 7: The difference between the raw walk odometry
and the combined visual and motion odometry

contact, as opposed to being pushed backwards or for-
wards. This means that a significant difference between
the attempted walk and the actual observed turn of the
robot can be utilised to detect collisions. Figure 8 shows
the difference between the motion and visual odometry
when a robot spinning on the spot collides with an ob-
stacle and is stopped from rotating.
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Figure 8: A graph showing how the visual odometry
system agregates to zero turn once the robot becomes
stuck, whils the walk odometry fails to cope

As a result of this collision detection, rtUNSWift was
able to limp the appropriate shoulder joint on a robot
when it was caught on an opponent. This allowed the
arm to slide out of the way and the robot to continue
past without spinning around and falling over, a far more
desirable result for the overall system.



5 Natural Landmark Localisation

As a result of the identical goal colours introduced in
2012, the SPL field no longer has any artificial land-
marks to distinguish which end of the field belongs to
which team. This forced the teams to come up with
measures to differentiate the two field ends to allow a
kidnapped robot to relocalise. The primary approach
taken by rUNSWift was to use the 1D SURF features
that are also utilised by visual odometry to map the
horizon at either end of the field.

The process for this mapping was simple, at the start
of each half the robot knows which half it starts in, so
has a reliable pose estimate. From this initial position,
the robot can walk to its kick-off position and turn 360°
on the spot. During this time it stores a map of the
pixels behind each goal post for future matching. Once
the game then starts the robot can match the mapped
pixels with the currently observed pixels to differentiate
the goal posts.

Storing and matching a large number of visual features
can be a slow process though, so much work was done
to optimise the process. The set of 1D SURF descrip-
tors is stored in a database and the matching is done
using a bag of words methodology. The features are also
geometrically verified to combat the lack of ordering in
the bag of words methodology. The matching is also
filtered over time using a voting system and sliding win-
dow. This means that one badly matched frame won’t
cause the robot to turn around and shoot at the wrong
goal. Figure 9 shows the process of classifying goal posts
from an image.
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Figure 9: Flow chart showing the process to chain from
image to goal post matching

To demonstrate the effectiveness of this work, the
robot was kidnapped to a variety of locations around
the field and then told to return to the location labelled
position 1 in Figure 10. From the 10 locations, the robot
was able to return to the correct location every time with
an average error of 44mm. An interesting note is that
in trial 5 the robot initially walked to the symmetrically

opposite location to its intended destination, but as it
arrived realised the mistake and corrected itself.

Figure 10: The experiment setup of 10 locations around
the field, with the goal to return to location 1

Another experiment was set up involving a robot
standing at the centre of the field and mapping the area
behind the goals. Once this was done, the robot was
then placed at a variety of locations around the field
and the matching scores for each goal area recorded. As
shown in Figure 11, the matching is good at identify-
ing the correct goal from a similar place to where it was
taken, but breaks down with large changes in angle and
distance. It was particularly encouraging though to find
the lack of false positive matching for the wrong goals,
which contributes to the system’s reliability.
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Figure 11: Heatmaps showing the matching scores for
different positions around the field to each goal posts
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This system was also entered to the SPL. Open Chal-
lenge at the 2012 competition and placed 2nd.



6 Robot Detection Using Vision and
Sonar

Robot detection for rtUNSWift involves fusing a com-
bination of visual and sonar data to detect robots. The
vision side of the robot detection is based around a mod-
ule from the 2011 team [Kurniawan, 2011] that utilises
dips in the field edges to detect candidate robot regions
(Figure 12). The original algorithm used a decision tree
to then discard bad regions, but this year it was simpli-
fied to simpler checks for colours inside the region. Good
candidate regions are then confirmed using sonar data to
remove any false positives from bad images.

Figure 12: Visual robot detection using dips in the field
edge

To enable more accurate robot detection in 2012, a
new sonar filtering system was developed. The new fil-
ter has a higher directional resolution than in the past
due to a unique utilisation of the sensor setup. The
sonar system on the Nao is split into a left transmitter
and receiver as well as a right transmitter and receiver
as shown in Figure 13[Aldebaraan-Robotics, 2012a]. Ob-
stacles can be detected on the left by turning on the left
transmitter and receiver and leaving the right ones off,
whilst obstacles on the right can be detected using the
inverse. A new feature for 2012 is detecting obstacles
straight ahead by turning on one side’s transmitter and
the other side’s receiver. This allowed for 3 rough direc-
tions of obstacles to be identified from sonar data.

The robot detection module combines the distance and
rough directional data from the sonar with the same in-
formation from the visual robot detection. The visual
detector struggles to give accurate distances but is much
better at determining the heading of a robot than the
sonar, so the combination of the two is used to provide
the most accurate data possible. The data is also filter
over time to ensure that one false reading isn’t enough
to break the system.

To demonstrate the effectiveness of the robot detection
system a penalty shootout experiment was set up. This
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Figure 13: The sonar setup on the Aldebaran Nao

involves the ball being placed on the penalty spot, the
striker on the halfway line and the goal keeper on his goal
line. The goal keeper was put in three different positions
and set up as shown in Figure 14. As striker walks up to
the ball and shoots for a goal, the observed position of
the goal keeper robot was logged. The results are shown
in Figure 15. As you can see, the initial estimate of the
goal keeper’s pose is fairly inaccurate, but as the striker
gets closer, the position becomes more and more refined.
By the time the striker reached the ball, the position
error of the goal keeper was between 28mm and 60mm.

Figure 14: Robot detection experiment setup
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Figure 15: The plot of the goal keeper’s position accord-
ing to the striker as it lines up its penalty shot



7 Team Ball Tracking

Individual ball tracking is obviously an important part
of playing soccer; it is difficult to make any sensible deci-
sion without knowing its location. Each rUNSWift robot
tracks the ball they see using an Extended Kalman Fil-
ter with an elliptical covariance (Figure 16). In addition
to each individual robot tracking their own version of
the ball, it is useful for the team as a whole to know
the location of the ball. Some examples of this include
a striker being able to continue walking towards an oc-
cluded ball because the rest of the team can see it, or
a robot realising it is mislocatised because its observed
ball doesn’t match the rest of the team’s belief about the
ball position.

Figure 16: Individual Ball Covariance

The team ball tracking uses a linear Kalman
Filter[Kalman, 1960] to track the location of the team
ball. The update for the filter is the best combination
of the observed balls, which might not include all the
team’s observations. To determine which observations
agree with each other, the Malahanobis distance[Maha-
lanobis, 1936] is utilised in addition to a maximal abso-
lute position difference. The observations are grouped
into agreeing subsets and the best one of these subsets is
chosen as the final subset. The filter update is a simple
weighted average of this set of observations.

One of the useful things about the elliptical covari-
ance is that it models the uncertainy of the distance and
heading separately. This is useful since a robot is able to
judge the heading of the ball quite accurately, whilst its
distance is far less accurate. When the team ball com-
bines these covariances, the ellipses often combine in a
useful fashion to reduce a large portion of the uncer-
tainty. This becomes particularly obvious when the co-
variance ellipses are approximately 90° offset from each
other. Figure 17 shows a good example of this.

This system is robust to noisy ball or pose estimates
by individual robots as their observations are left out
of the update. There is also a feedback mechanism in
place where each robot is notified if its ball observation
was the same as the rest of the team, giving the robot a
clue that it may be mislocalised. In fact, a robot is able

Figure 17: Team ball covariances combining to reduce
uncertainy and improve the ball position

to recover from a flip to the symmetrically correspond-
ing mode on the other side of the field if the team ball
position indicates this has happened.

To show the usefulness of the team ball, an experiment
was run where 4 robots stood on the sidelines of the
field and observed the ball at 9 different locations around
the field. This setup and the ball locations are show
in Figure 18. The accuracy of the team ball improves
significantly as more robots contribute to its position,
as shown by Figure 19. The position of the team ball
becomes particularly accurate when robots view the ball
from different angles around the field simultaneously.

Figure 18: Experimental setup for testing team ball
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Figure 19: A graph showing how the average error is
significantly reduced with more robots



8 Dual Modal Kalman Filter

The rUNSWift localisation system involves the use of a
dual modal Kalman filtering approach. The actual im-
plementation contains two unimodal Kalman filters, the
“main” mode and the “alternate” mode [Hunter, 2012].
As its name suggests, the "main” mode contains the
robot’s current best hypothesis for where it is, whilst the
“alternate” mode is the best alternative location that the
robot might be in.

In order to decide how to apply updates to these two
modes, the Malahanobis distance is again used. If an
observation of the robot’s current pose is received and it
is considered similar to the main mode, then a standard
update is performed. If the observation is considered
reliable enough, we will also reset the alternate mode at
this point as well.

However if the observation is too far away from the
main mode, we consider updating the alternate mode.
If the current observation matches the alternate mode
well, we update it. However if it doesn’t match the al-
ternate mode either, then we need to consider which is
more likely, the observation or the alternate mode. If
the observation is deemed better, we can replace the al-
ternate estimate with the new observation, else we can
simply weaken the current alternate and wait for more
updates.

These two filters are constantly running in parallel
and the two can be switched at any point. If the al-
ternate mode receives a significant number of updates in
a row and the main mode does not, the alternate mode
switches to become the main mode. One of the interest-
ing cases here is that most updates are correct for two
symmetrically opposite points on the field. The way we
disambiguate the robot’s heading is using the team ball
and natural landmarks information described in previ-
ous sections. In this case, the alternate mode becomes
the symmetrically opposite position on the field and af-
ter enough updates, the robot will "flip” to the other
side of the field.

To measure the success of the system, some statistics
were gathered about the robots during the 2012 com-
petition. The first table (Table 1) shows the number
of correct "Ready Skills” (Figure 20) that occured. This
skill runs at the start of each half and after each goal and
is where the robots positions themselves in their own half
ready for a kick off. Note that the table includes an Er-
ror column for other cases where the robot didn’t reach
its destination due to external events including things
like being penalised, falling over, running out of time,
ete.

Another measure of the robot’s abiliity to localise at
competition was how accurately it shot during games.
Table 2 shows the accuracy of the kicks made by
rUNSWift during the 2012 competition. A correct kick

Figure 20: rUNSWift with a successful Ready Skill

Localised Mislocalised
Game Correct Error Incorrect Flipped
RoboCanes 19 0 1 2
Dutch Nao Team 39 0 0 1
B-Human 19 4 0 0
TJArk 17 3 2 1
Austrian Kangaroos 19 5 0 2
Austin Villa 51 2 0 1
HTWK 49 2 0 2
Total 213 16 3 9

Table 1: Ready skill performance results from official
matches

was one aimed directly into the opponent’s goal while a
close kick was one that narrowly missed the goal or hit
the post, suggesting a small error in the pose estimate.
A missed kick was one with a significant error where the
ball was kicked over the sideline and finally a flipped shot
was one facing our own goal.

Match (versus) Correct Close Miss Flipped
RoboCanes 17 1 0 0
Dutch Nao Team 19 0 1 0
B-Human 15 0 1 0
TJArk 15 2 1 3
Austrian Kangaroos 18 0 1 1
Austin Villa 26 1 1 0
HTWK 24 4 1 1
Total 134 8 6 5

Table 2: Kick accuracy results from official matches



9 Omni-directional Kicking

Most teams in the SPL shoot for the goals by walking
behind the ball and kicking straight. rUNSWift devel-
oped a unique approach in 2012 where the robot simply
walks up near the ball and turns to face the goal as part
of the actual kick motion [Teh, 2012]. The method for
doing this is to add an extra step phase at the start of
the kick where the foot is placed at an angle parallel with
the line from the ball to the goals. This is similar to how
real soccer players kick the ball and allows flexibility in
the shoot direction without comprimising power. Figure
21 shows the kick in action, starting with the angled step
and finishing off with a big kick.

Figure 21: The rtUNSWift kick in action

In addition to improving the robustness of the kicking,
work was also focused on speeding up the kick action as
much as possible. A faster kick gives the opponent less
time to steal the ball away, so is an important aspect of
soccer playing. Figure 22 shows the improvement to the
speed of the kick action over stages of development this
year. An interesting point to notice is that as well as
being faster on average, the final result is also a lot more
consistent and reliable than past kicks.

As a result of the increased flexibility in kicking direc-
tions, we were able to significantly reduce the time taken
for the robot to line up and shoot for the goal. Table
3 shows the time taken to score a goal from three given
starting positions around the field. This is a standard
test that we performed reguarly throughout development
for the past 3 years and the table shows the best time
for each position each year. It’s worth noting that the
kicking isn’t the only influence on these times, however
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Figure 22: The improvements to the kicking time

through the development cycle

was a major step in reducing the amount of time taken
to shoot.

Start Position 2010 2011 2012

a) -1200, 0, 0 00:13  00:16 00:11.04

b) -1200, 2000, —7/2 00:34 00:31 00:19.00

c) -1200, 0, —7 00:40 00:26  00:13.50
Table 3: Comparison of striker test times over

rUNSWift’s past three years

Another measure of the kick’s performance was at
the 2012 competition. Here rUNSWift scored the most
goals out of any team, scoring 62 goals over 8 games.
The teams that came first and second overall scored 54
and 55 goals each, leaving them at least 7 goals behind
rUNSWift. Although other aspects of the game play no
doubt affected the number of goals scored by rUNSWift,
the robustness of the kick was certainly a significant fac-
tor in the high goal tally.



10 Concluding Discussion on Team
Performance

The true test of performance for such a developmental
system is running it in the environment it was designed
for, seeing if it achieves its objectives and observing how
it compares to other competitors. In this case that means
on the soccer field under the pressure of competition
matches.

In 2012 rUNSWift finished 3rd place overall and 2nd
in the Open Challenge, a big improvement on the 2011
results where we were eliminated in the Quarter Finals.
rUNSWift was also the top goal scoring team in the SPL,
scoring a total of 62 goals over 8 games. This was again a
huge improvement on the 2011 results of scoring 23 goals
over 6 games. The team also did not score any own goals
at the competition, which was a big achievement consid-
ering the change to a symmetric field layout. Figure 23
shows the results of the semi finals onwards, with the top
4 teams coming from the University of Texas at Austin
(Austin Villa), the University of Bremen (BHuman), the
University of Leipzig (Nao-Team HTWK) and the Uni-
versity of New South Wales (rUNSWift).

Semi Finals
51  B-Human Nao-Team HTWK 2 : 2 (4 : 3 after penalties)

52 Austin Villa rUNSWift 7:6

3rd Place

SF MNao-Team HTWK rUNSWift 1: 11

Final

F B-Human Austin Villa 2: 4

Figure 23: 2012 Competition Results
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