Georgia Tech

Oregon State University

facebook Artificial Intelligence

distribution over the location state s_t from start s_0 to goal s_T

 Rico Jonschkowski and Oliver Brock. End-to-end learnable histogram filters. In In Workshop on Deep Learning for Action and Interaction at the Conference on Neural Information Processing Systems (NIPS), 2016.

Differentiable Particle Filters: End-to-End Learning with Algorithmic Priors. In Proceedings of Robotics: Science and Systems (RSS), 2018.

Chasing Ghosts : Instruction Following as Bayesian State Tracking

Peter Anderson^{*1}, Ayush Shrivastava^{*1}, Devi Parikh^{1,2}, Dhruv Batra^{1,2}, Stefan Lee³

Georgia Institute of Technology¹ Facebook AI Research² Oregon State University³

* denotes equal contribution

RESULTS

Goal Location Prediction Task [Mapper + Filter]

Vision and Language Navigation (VLN) Task [Mapper + Filter + Policy]

			Val-Seen					Val-Unseen				
Model	RL	Aug	TL	NE	OS	SR	SPL	TL	NE	OS	SR	SPL
Speaker-Follower		\checkmark	-	3.36	0.74	0.66	-	-	6.62	0.45	0.36	-
RCM	\checkmark		10.65	3.53	0.75	0.67	-	11.46	6.09	0.50	0.43	_
Regretful Agent		\checkmark	-	3.23	0.77	0.69	0.63	-	5.32	0.59	0.50	0.41
FAST	\checkmark		-	-	_	-	-	21.1	4.97	-	0.56	0.43
Back Translation	\checkmark	\checkmark	11.0	3.99	_	0.62	0.59	10.7	5.22	_	0.52	0.48
Speaker-Follower			-	4.86	0.63	0.52	-	-	7.07	0.41	0.31	-
Back Translation			10.3	5.39	-	0.48	0.46	9.15	6.25	-	0.44	0.40
Ours			10.15	57.59	0.42	0.34	0.30	9.64	7.20	0.44	0.35	0.31

CONCLUSION

- Instruction following can be formulated as **Bayesian State Tracking** with observations and actions extracted from the instruction.
- Advantages of this approach:
 - **Uncertainty:** an explicit probability for every trajectory the agent could take (naturally handles multimodal hypotheses)
 - Interpretability: inspect the predicted goal location distribution
 - **Performance:** Improved goal location prediction
- Ideas for future work:

 - Reasoning about unseen map regions

- Trained/eval'ed without Policy
- Fixed trajectories move towards goal with 50% probability
- Adding Bayes filter structure improves over just using LingUNet [4]
- Including heading in the state is important for modeling oriented instructions (e.g., "pass the kitchen on your left")
- Training trajectories: Sampled from Policy with 50% probability, otherwise GT
- Credible performance on the full VLN task compared to existing models with no RL and no data augmentation
- Improved generalization from seen to unseen environments

- More sophisticated policy module, RL training and data augmentation