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INTUITION: UNPACKING A NAVIGATION INSTRUCTION1

BACKGROUND: BAYESIAN STATE TRACKING2

Chasing Ghosts : Instruction Following as Bayesian State Tracking
Peter Anderson*1, Ayush Shrivastava*1, Devi Parikh1,2, Dhruv Batra1,2, Stefan Lee3

Georgia Institute of Technology1 Facebook AI Research2 Oregon State University3 * denotes equal contribution
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Walk out of the bathroom, turn left, and go on to the stairs and wait near the coat rack.

𝒔𝑡+1

𝒐𝑡+1

𝒂𝑡+1

⋯𝒔𝑡−1

𝒐𝑡−1

𝒂𝑡−1

⋯ 𝒔𝑡

𝒐𝑡

𝒂𝑡

𝑏𝑒𝑙(𝒔𝑡) = න𝑝 𝒔𝑡 𝒔𝑡−1, 𝒂𝑡 𝑏𝑒𝑙(𝒔𝑡−1) 𝑑𝒔𝑡−1

𝑏𝑒𝑙(𝒔𝑡) = 𝜂 𝑝 𝒐𝑡 𝒔𝑡 𝑏𝑒𝑙(𝒔𝑡)

Observation Model

Motion Model
Motion Update:

Observation Update:

- Instruction following can be formulated as Bayesian State Tracking with 

observations and actions extracted from the instruction. 

- Advantages of this approach:

- Uncertainty: an explicit probability for every trajectory the agent could 

take (naturally handles multimodal hypotheses)

- Interpretability: inspect the predicted goal location distribution

- Performance: Improved goal location prediction

- Ideas for future work:

- More sophisticated policy module, RL training and data augmentation

- Reasoning about unseen map regions
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A visually-grounded navigation instruction can be interpreted as a sequence of 

expected observations and actions an agent following the correct trajectory would 

encounter and perform.

Given a sequence of observations 𝒐1:𝑇 and actions 𝒂1:𝑇 extracted from a natural 
language instruction, how should we determine the final (goal) location 𝒔𝑇?
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Recent work [1-3] show Bayes filters can be embedded into deep neural networks.

INTERPRETABILITY OF MODEL5

Goal Location Prediction Task [Mapper + Filter]

Vision and Language Navigation (VLN) Task [Mapper + Filter + Policy]
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i.e. at each time step 𝑡, compute 𝑏𝑒𝑙(𝒔𝑡) = 𝑝(𝒔𝑡|𝒂1:𝑡 , 𝒐1:𝑡) also called belief.
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- Training trajectories: Sampled 

from Policy with 50% 

probability, otherwise GT

- Credible performance on the 

full VLN task compared to 

existing models with no RL and 

no data augmentation

- Improved generalization from

seen to unseen environments

- Trained/eval’ed without Policy

- Fixed trajectories move 

towards goal with 50% 

probability

- Adding Bayes filter structure 

improves over just using 

LingUNet [4]

- Including heading in the state 

is important for modeling 

oriented instructions (e.g., 

“pass the kitchen on your left”)

Val-Seen Val-Unseen

Model RL Aug TL NE OS SR SPL TL NE OS SR SPL

Speaker-Follower ✓ - 3.36 0.74 0.66 - - 6.62 0.45 0.36 -

RCM ✓ 10.65 3.53 0.75 0.67 - 11.46 6.09 0.50 0.43 -

Regretful Agent ✓ - 3.23 0.77 0.69 0.63 - 5.32 0.59 0.50 0.41

FAST ✓ - - - - - 21.1 4.97 - 0.56 0.43

Back Translation ✓ ✓ 11.0 3.99 - 0.62 0.59 10.7 5.22 - 0.52 0.48

Speaker-Follower - 4.86 0.63 0.52 - - 7.07 0.41 0.31 -

Back Translation 10.3 5.39 - 0.48 0.46 9.15 6.25 - 0.44 0.40

Ours 10.15 7.59 0.42 0.34 0.30 9.64 7.20 0.44 0.35 0.31

Key idea: Use a Bayes filter to track the trajectory to goal, maintaining a probability 

distribution over the location state 𝒔𝑡 from start 𝒔0 to goal 𝒔𝑇

Observed Environment


